The pituitary–adrenal axis and body composition

Pituitary - Tập 12 - Trang 105-115 - 2008
Eva Fernandez-Rodriguez1,2, Paul M. Stewart1, Mark S. Cooper1
1Division of Medical Sciences, The Institute of Biomedical Research, The Medical School, The University of Birmingham, Birmingham , UK
2Endocrinology and Nutrition Service, Complejo Hospitalario Universitario de Santiago (CHUS), Compostela, Spain

Tóm tắt

The activity of the pituitary–adrenal axis can profoundly impact on body composition. This is dramatically seen in Cushing’s syndrome (CS) but changes in body composition are also implicated in depression and alcoholic pseudocushing’s. The pathophysiological mechanisms underlying these changes remain poorly understood. Changes to body composition in CS include increased fat mass, decreased bone mass, thinning of the skin and reduced lean mass. Why these tissues are affected so dramatically is unclear. Additionally, the change in body composition between individuals varies considerably for reasons which are only now becoming evident. This paper reviews the phenotypic changes with altered pituitary–adrenal axis activity and discusses the mechanisms involved. The primary focus is on adipose, bone, muscle and skin since the most dramatic changes are seen in these tissues.

Tài liệu tham khảo

Mayo-Smith W, Hayes CW, Biller BM, Klibanski A, Rosenthal H, Rosenthal DI (1989) Body fat distribution measured with CT: correlations in healthy subjects, patients with anorexia nervosa, and patients with Cushing syndrome. Radiology 170:515–518. Medline Burt MG, Gibney J, Ho KK (2006) Characterization of the metabolic phenotypes of Cushing’s syndrome and growth hormone deficiency: a study of body composition and energy metabolism. Clin Endocrinol (Oxf) 64:436–443. Medline. doi:10.1111/j.1365–2265.2006.02488.x Wajchenberg BL, Bosco A, Marone MM et al (1995) Estimation of body fat and lean tissue distribution by dual energy X-ray absorptiometry and abdominal body fat evaluation by computed tomography in Cushing’s disease. J Clin Endocrinol Metab 80:2791–2794. Medline. doi:10.1210/jc.80.9.2791 Garrapa GG, Pantanetti P, Arnaldi G, Mantero F, Faloia E (2001) Body composition and metabolic features in women with adrenal incidentaloma or Cushing’s syndrome. J Clin Endocrinol Metab 86:5301–5306. Medline. doi:10.1210/jc.86.11.5301 Rockall AG, Sohaib SA, Evans D et al (2003) Hepatic steatosis in Cushing’s syndrome: a radiological assessment using computed tomography. Eur J Endocrinol 149:543–548. Medline. doi:10.1530/eje.0.1490543 Zoppini G, Targher G, Venturi C, Zamboni C, Muggeo M (2004) Relationship of nonalcoholic hepatic steatosis to overnight low-dose dexamethasone suppression test in obese individuals. Clin Endocrinol (Oxf) 61:711–715. Medline. doi:10.1111/j.1365–2265.2004.02154.x Paulsen SK, Pedersen SB, Fisker S, Richelsen B (2007) 11Beta-HSD type 1 expression in human adipose tissue: impact of gender, obesity, and fat localization. Obesity (Silver Spring) 15:1954–1960. Medline Rebuffe-Scrive M, Krotkiewski M, Elfverson J, Bjorntorp P (1988) Muscle and adipose tissue morphology and metabolism in Cushing’s syndrome. J Clin Endocrinol Metab 67:1122–1128. Medline Gravholt CH, Dall R, Christiansen JS, Moller N, Schmitz O (2002) Preferential stimulation of abdominal subcutaneous lipolysis after prednisolone exposure in humans. Obes Res 10:774–781. Medline Fried SK, Russell CD, Grauso NL, Brolin RE (1993) Lipoprotein lipase regulation by insulin and glucocorticoid in subcutaneous and omental adipose tissues of obese women and men. J Clin Invest 92:2191–2198. Medline Tanaka H, Ichikawa Y, Akama H, Homma M (1989) In vivo responsiveness to glucocorticoid correlated with glucocorticoid receptor content in peripheral blood leukocytes in normal humans. Acta Endocrinol (Copenh) 121:470–476. Medline Issekutz B Jr, Borkow I (1972) Effect of catecholamines and dibutyryl-cyclic-AMP on glucose turnover, plasma free fatty acids, and insulin in dogs treated with methylprednisolone. Can J Physiol Pharmacol 50:999–1006. Medline Ahdjoudj S, Lasmoles F, Oyajobi BO, Lomri A, Delannoy P, Marie PJ (2001) Reciprocal control of osteoblast/chondroblast and osteoblast/adipocyte differentiation of multipotential clonal human marrow stromal F/STRO-1(+) cells. J Cell Biochem 81:23–38. Medline. doi:10.1002/1097-4644(20010401)81:1≤23::AID-JCB1021≥3.0.CO;2-H Bujalska IJ, Kumar S, Hewison M, Stewart PM (1999) Differentiation of adipose stromal cells: the roles of glucocorticoids and 11beta-hydroxysteroid dehydrogenase. Endocrinology 140:3188–3196. Medline. doi:10.1210/en.140.7.3188 MacDougald OA, Lane MD (1995) Transcriptional regulation of gene expression during adipocyte differentiation. Annu Rev Biochem 64:345–373. Medline. doi:10.1146/annurev.bi.64.070195.002021 Ottosson M, Lonnroth P, Bjorntorp P, Eden S (2000) Effects of cortisol and growth hormone on lipolysis in human adipose tissue. J Clin Endocrinol Metab 85:799–803. Medline. doi:10.1210/jc.85.2.799 Mancini T, Doga M, Mazziotti G, Giustina A (2004) Cushing’s syndrome and bone. Pituitary 7:249–252. Medline. doi:10.1007/s11102-005-1051-2 Ueland T, Kristo C, Godang K, Aukrust P, Bollerslev J (2003) Interleukin-1 receptor antagonist is associated with fat distribution in endogenous Cushing’s syndrome: a longitudinal study. J Clin Endocrinol Metab 88:1492–1496. Medline. doi:10.1210/jc.2002-021030 Halleux CM, Servais I, Reul BA, Detry R, Brichard SM (1998) Multihormonal control of ob gene expression and leptin secretion from cultured human visceral adipose tissue: increased responsiveness to glucocorticoids in obesity. J Clin Endocrinol Metab 83:902–910. Medline. doi:10.1210/jc.83.3.902 Stewart PM, Tomlinson JW (2002) Cortisol, 11 beta-hydroxysteroid dehydrogenase type 1 and central obesity. Trends Endocrinol Metab 13:94–96. Medline. doi:10.1016/S1043-2760(02)00566-0 Bujalska IJ, Kumar S, Stewart PM (1997) Does central obesity reflect “Cushing’s disease of the omentum”? Lancet. 349:1210–1213. Medline. doi:10.1016/S0140-6736(96)11222-8 Masuzaki H, Paterson J, Shinyama H et al (2001) A transgenic model of visceral obesity and the metabolic syndrome. Science 294:2166–2170. Medline. doi:10.1126/science.1066285 Rask E, Walker BR, Soderberg S et al (2002) Tissue-specific changes in peripheral cortisol metabolism in obese women: increased adipose 11beta-hydroxysteroid dehydrogenase type 1 activity. J Clin Endocrinol Metab 87:3330–3336. Medline. doi:10.1210/jc.87.7.3330 Engeli S, Bohnke J, Feldpausch M et al (2004) Regulation of 11beta-HSD genes in human adipose tissue: influence of central obesity and weight loss. Obes Res 12:9–17. Medline Sandeep TC, Andrew R, Homer NZ, Andrews RC, Smith K, Walker BR (2005) Increased in vivo regeneration of cortisol in adipose tissue in human obesity and effects of the 11beta-hydroxysteroid dehydrogenase type 1 inhibitor carbenoxolone. Diabetes 54:872–879. Medline. doi:10.2337/diabetes.54.3.872 Tomlinson JW, Moore JS, Clark PM, Holder G, Shakespeare L, Stewart PM (2004) Weight loss increases 11beta-hydroxysteroid dehydrogenase type 1 expression in human adipose tissue. J Clin Endocrinol Metab 89:2711–2716. Medline. doi:10.1210/jc.2003-031376 Draper N, Walker EA, Bujalska IJ et al (2003) Mutations in the genes encoding 11beta-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase interact to cause cortisone reductase deficiency. Nat Genet 34:434–439. Medline. doi:10.1038/ng1214 Rebuffe-Scrive M, Bronnegard M, Nilsson A, Eldh J, Gustafsson JA, Bjorntorp P (1990) Steroid hormone receptors in human adipose tissues. J Clin Endocrinol Metab 71:1215–1219. Medline Rebuffe-Scrive M, Lundholm K, Bjorntorp P (1985) Glucocorticoid hormone binding to human adipose tissue. Eur J Clin Invest 15:267–271. Medline Bujalska IJ, Quinkler M, Tomlinson JW, Montague CT, Smith DM, Stewart PM (2006) Expression profiling of 11beta-hydroxysteroid dehydrogenase type-1 and glucocorticoid-target genes in subcutaneous and omental human preadipocytes. J Mol Endocrinol 37:327–340. Medline. doi:10.1677/jme.1.02048 Dobson MG, Redfern CP, Unwin N, Weaver JU (2001) The N363S polymorphism of the glucocorticoid receptor: potential contribution to central obesity in men and lack of association with other risk factors for coronary heart disease and diabetes mellitus. J Clin Endocrinol Metab 86:2270–2274. Medline. doi:10.1210/jc.86.5.2270 Fraser R, Ingram MC, Anderson NH, Morrison C, Davies E, Connell JM (1999) Cortisol effects on body mass, blood pressure, and cholesterol in the general population. Hypertension 33:1364–1368. Medline Dimitriou T, Maser-Gluth C, Remer T (2003) Adrenocortical activity in healthy children is associated with fat mass. Am J Clin Nutr 77:731–736. Medline Marin P, Darin N, Amemiya T, Andersson B, Jern S, Bjorntorp P (1992) Cortisol secretion in relation to body fat distribution in obese premenopausal women. Metabolism 41:882–886. Medline. doi:10.1016/0026–0495(92)90171-6 Stewart PM, Boulton A, Kumar S, Clark PM, Shackleton CH (1999) Cortisol metabolism in human obesity: impaired cortisone–>cortisol conversion in subjects with central adiposity. J Clin Endocrinol Metab 84:1022–1027. Medline. doi:10.1210/jc.84.3.1022 Pasquali R, Vicennati V (2000) The abdominal obesity phenotype and insulin resistance are associated with abnormalities of the hypothalamic-pituitary-adrenal axis in humans. Horm Metab Res 32:521–525. Medline Travison TG, O’Donnell AB, Araujo AB, Matsumoto AM, McKinlay JB (2007) Cortisol levels and measures of body composition in middle-aged and older men. Clin Endocrinol (Oxf) 67:71–77. Medline. doi:10.1111/j.1365-2265.2007.02837.x Jessop DS, Dallman MF, Fleming D, Lightman SL (2001) Resistance to glucocorticoid feedback in obesity. J Clin Endocrinol Metab 86:4109–4114. Medline. doi:10.1210/jc.86.9.4109 Purnell JQ, Brandon DD, Isabelle LM, Loriaux DL, Samuels MH (2004) Association of 24-hour cortisol production rates, cortisol-binding globulin, and plasma-free cortisol levels with body composition, leptin levels, and aging in adult men and women. J Clin Endocrinol Metab 89:281–287. Medline. doi:10.1210/jc.2003-030440 Ohmori N, Nomura K, Ohmori K, Kato Y, Itoh T, Takano K (2003) Osteoporosis is more prevalent in adrenal than in pituitary Cushing’s syndrome. Endocr J 50:1–7. Medline. doi:10.1507/endocrj.50.1 Yoshihara A, Okubo Y, Tanabe A et al (2007) A juvenile case of Cushing’s disease incidentally discovered with multiple bone fractures. Intern Med 46:583–587. Medline. doi:10.2169/internalmedicine.46.1824 Kaltsas G, Manetti L, Grossman AB (2002) Osteoporosis in Cushing’s syndrome. Front Horm Res 30:60–72. Medline Kristo C, Jemtland R, Ueland T, Godang K, Bollerslev J (2006) Restoration of the coupling process and normalization of bone mass following successful treatment of endogenous Cushing’s syndrome: a prospective, long-term study. Eur J Endocrinol 154:109–118. Medline. doi:10.1530/eje.1.02067 van Staa TP, Leufkens HG, Abenhaim L, Zhang B, Cooper C (2000) Use of oral corticosteroids and risk of fractures. J Bone Miner Res 15:993–1000. Medline. doi:10.1359/jbmr.2000.15.6.993 Cooper MS (2004) Sensitivity of bone to glucocorticoids. Clin Sci (Lond) 107:111–123. Medline. doi:10.1042/CS20040070 Tauchmanova L, Rossi R, Nuzzo V et al (2001) Bone loss determined by quantitative ultrasonometry correlates inversely with disease activity in patients with endogenous glucocorticoid excess due to adrenal mass. Eur J Endocrinol 145:241–247. Medline. doi:10.1530/eje.0.1450241 Godang K, Ueland T, Bollerslev J (1999) Decreased bone area, bone mineral content, formative markers, and increased bone resorptive markers in endogenous Cushing’s syndrome. Eur J Endocrinol 141:126–131. Medline. doi:10.1530/eje.0.1410126 Minetto M, Reimondo G, Osella G, Ventura M, Angeli A, Terzolo M (2004) Bone loss is more severe in primary adrenal than in pituitary-dependent Cushing’s syndrome. Osteoporos Int 15:855–861. Medline. doi:10.1007/s00198-004-1616-3 Di Somma C, Pivonello R, Loche S et al (2003) Effect of 2 years of cortisol normalization on the impaired bone mass and turnover in adolescent and adult patients with Cushing’s disease: a prospective study. Clin Endocrinol (Oxf) 58:302–308. Medline. doi:10.1046/j.1365-2265.2003.01713.x Di Somma C, Pivonello R, Loche S et al (2002) Severe impairment of bone mass and turnover in Cushing’s disease: comparison between childhood-onset and adulthood-onset disease. Clin Endocrinol (Oxf) 56:153-158. Medline. doi:10.1046/j.0300-0664.2001.01454.doc.x Chiodini I, Carnevale V, Torlontano M et al (1998) Alterations of bone turnover and bone mass at different skeletal sites due to pure glucocorticoid excess: study in eumenorrheic patients with Cushing’s syndrome. J Clin Endocrinol Metab 83:1863–1867. Medline. doi:10.1210/jc.83.6.1863 Gennari C, Imbimbo B. (1985) Effects of prednisone and deflazacort on vertebral bone mass. Calcif Tissue Int 37:592–593. Medline. doi:10.1007/BF02554912 van der Eerden AW, den Heijer M, Oyen WJ, Hermus AR (2007) Cushing’s syndrome and bone mineral density: lowest Z scores in young patients. Neth J Med 65:137–141. Medline Hermus AR, Smals AG, Swinkels LM et al (1995) Bone mineral density and bone turnover before and after surgical cure of Cushing’s syndrome. J Clin Endocrinol Metab 80:2859–2865. Medline. doi:10.1210/jc.80.10.2859 Leong GM, Abad V, Charmandari E et al (2007) Effects of child- and adolescent-onset endogenous Cushing syndrome on bone mass, body composition, and growth: a 7-year prospective study into young adulthood. J Bone Miner Res 22:110–118. Medline. doi:10.1359/jbmr.061010 Faggiano A, Pivonello R, Filippella M et al (2001) Spine abnormalities and damage in patients cured from Cushing’s disease. Pituitary 4:153–161. Medline. doi:10.1023/A:1015362822901 Chiodini I, Mascia ML, Muscarella S et al (2007) Subclinical hypercortisolism among outpatients referred for osteoporosis. Ann Intern Med 147:541–548. Medline Cooper MS, Blumsohn A, Goddard PE et al (2003) 11beta-hydroxysteroid dehydrogenase type 1 activity predicts the effects of glucocorticoids on bone. J Clin Endocrinol Metab 88:3874–3877. Medline. doi:10.1210/jc.2003-022025 Godschalk MF, Downs RW (1988) Effect of short-term glucocorticoids on serum osteocalcin in healthy young men. J Bone Miner Res 3:113–115. Medline Francucci CM, Pantanetti P, Garrapa GG, Massi F, Arnaldi G, Mantero F (2002) Bone metabolism and mass in women with Cushing’s syndrome and adrenal incidentaloma. Clin Endocrinol (Oxf) 57:587–593. Medline. doi:10.1046/j.1365-2265.2002.01602.x Canalis E (1996) Clinical review 83: Mechanisms of glucocorticoid action in bone: implications to glucocorticoid-induced osteoporosis. J Clin Endocrinol Metab 81:3441–3447. Medline. doi:10.1210/jc.81.10.3441 Karavitaki N, Ioannidis G, Giannakopoulos F, Mavrokefalos P, Thalassinos N (2004) Evaluation of bone mineral density of the peripheral skeleton in pre- and postmenopausal women with newly diagnosed endogenous Cushing’s syndrome. Clin Endocrinol (Oxf) 60:264–270. Medline. doi:10.1111/j.1365-2265.2004.01968.x Canalis E, Bilezikian JP, Angeli A, Giustina A (2004) Perspectives on glucocorticoid-induced osteoporosis. Bone 34:593–598. Medline. doi:10.1016/j.bone.2003.11.026 Cooper MS, Hewison M, Stewart PM (1999) Glucocorticoid activity, inactivity and the osteoblast. J Endocrinol 163:159–164. Medline. doi:10.1677/joe.0.1630159 Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC (1998) Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest 102:274–282. Medline. doi:10.1172/JCI2799 Eijken M, Hewison M, Cooper MS et al (2005) 11beta-Hydroxysteroid dehydrogenase expression and glucocorticoid synthesis are directed by a molecular switch during osteoblast differentiation. Mol Endocrinol 19:621–631. Medline. doi:10.1210/me.2004-0212 Cooper MS, Bujalska I, Rabbitt E et al (2001) Modulation of 11beta-hydroxysteroid dehydrogenase isozymes by proinflammatory cytokines in osteoblasts: an autocrine switch from glucocorticoid inactivation to activation. J Bone Miner Res 16:1037–1044. Medline. doi:10.1359/jbmr.2001.16.6.1037 Newell-Price J, Trainer P, Besser M, Grossman A (1998) The diagnosis and differential diagnosis of Cushing’s syndrome and pseudo-Cushing’s states. Endocr Rev 19:647–672. Medline. doi:10.1210/er.19.5.647 Muller R, Kugelberg E (1959) Myopathy in Cushing’s syndrome. J Neurol Neurosurg Psychiatry 22:314–319. Medline Lane RJ, Mastaglia FL (1978) Drug-induced myopathies in man. Lancet 2:562–566. Medline. doi:10.1016/S0140-6736(78)92894-5 Mills GH, Kyroussis D, Jenkins P et al (1999) Respiratory muscle strength in Cushing’s syndrome. Am J Respir Crit Care Med 160:1762–1765. Medline Khaleeli AA, Edwards RH, Gohil K et al (1983) Corticosteroid myopathy: a clinical and pathological study. Clin Endocrinol (Oxf) 18:155–166. Medline Khaleeli AA, Betteridge DJ, Edwards RH, Round JM, Ross EJ (1983) Effect of treatment of Cushing’s syndrome on skeletal muscle structure and function. Clin Endocrinol (Oxf) 19:547–556. Medline Kendall-Taylor P, Turnbull DM (1983) Endocrine myopathies. Br Med J (Clin Res Ed) 287:705–708. Medline Djaldetti M, Gafter U, Fishman P (1977) Ultrastructural observations in myopathy complicating Cushing’s disease. Am J Med Sci 273:273–277. Medline Jang C, Obeyesekere VR, Dilley RJ, Alford FP, Inder WJ (2006) 11Beta hydroxysteroid dehydrogenase type 1 is expressed and is biologically active in human skeletal muscle. Clin Endocrinol (Oxf) 65:800–805. Medline. doi:10.1111/j.1365-2265.2006.02669.x Whorwood CB, Donovan SJ, Wood PJ, Phillips DI (2001) Regulation of glucocorticoid receptor alpha and beta isoforms and type I 11beta-hydroxysteroid dehydrogenase expression in human skeletal muscle cells: a key role in the pathogenesis of insulin resistance? J Clin Endocrinol Metab 86:2296–2308. Medline. doi:10.1210/jc.86.5.2296 Tomlinson JW, Moore J, Cooper MS et al (2001) Regulation of expression of 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue: tissue-specific induction by cytokines. Endocrinology 142:1982–1989. Medline. doi:10.1210/en.142.5.1982 Fitts RH, Romatowski JG, Peters JR, Paddon-Jones D, Wolfe RR, Ferrando AA (2007) The deleterious effects of bed rest on human skeletal muscle fibers are exacerbated by hypercortisolemia and ameliorated by dietary supplementation. Am J Physiol Cell Physiol 293:C313-C320. Medline. doi:10.1152/ajpcell.00573.2006 Louard RJ, Bhushan R, Gelfand RA, Barrett EJ, Sherwin RS (1994) Glucocorticoids antagonize insulin’s antiproteolytic action on skeletal muscle in humans. J Clin Endocrinol Metab 79:278–284. Medline. doi:10.1210/jc.79.1.278 Hong DH, Forsberg NE (1995) Effects of dexamethasone on protein degradation and protease gene expression in rat L8 myotube cultures. Mol Cell Endocrinol 108:199–209. Medline. doi:10.1016/0303-7207(95)03476-N Joulia-Ekaza D, Cabello G (2007) The myostatin gene: physiology and pharmacological relevance. Curr Opin Pharmacol 7:310-315. Medline. doi:10.1016/j.coph.2006.11.011 Ma K, Mallidis C, Bhasin S et al (2003) Glucocorticoid-induced skeletal muscle atrophy is associated with upregulation of myostatin gene expression. Am J Physiol Endocrinol Metab 285:E363–E371. Medline Gilson H, Schakman O, Combaret L et al (2007) Myostatin gene deletion prevents glucocorticoid-induced muscle atrophy. Endocrinology 148:452–460. Medline. doi:10.1210/en.2006-0539 Dardevet D, Sornet C, Taillandier D, Savary I, Attaix D, Grizard J (1995) Sensitivity and protein turnover response to glucocorticoids are different in skeletal muscle from adult and old rats. Lack of regulation of the ubiquitin-proteasome proteolytic pathway in aging. J Clin Invest 96:2113–2119. Medline Rieu I, Sornet C, Grizard J, Dardevet D (2004) Glucocorticoid excess induces a prolonged leucine resistance on muscle protein synthesis in old rats. Exp Gerontol 39:1315–1321. Medline. doi:10.1016/j.exger.2004.06.005 Seene T, Kaasik P, Pehme A, Alev K, Riso EM (2003) The effect of glucocorticoids on the myosin heavy chain isoforms’ turnover in skeletal muscle. J Steroid Biochem Mol Biol 86:201–206. Medline. doi:10.1016/j.jsbmb.2003.08.002 Pirlich M, Biering H, Gerl H et al (2002) Loss of body cell mass in Cushing’s syndrome: effect of treatment. J Clin Endocrinol Metab 87:1078–1084. Medline. doi:10.1210/jc.87.3.1078 Ahtikoski AM, Riso EM, Koskinen SO, Risteli J, Takala TE (2004) Regulation of type IV collagen gene expression and degradation in fast and slow muscles during dexamethasone treatment and exercise. Pflugers Arch 448:123–130. Medline. doi:10.1007/s00424–003–1226–5 Manoli I, Le H, Alesci S et al (2005) Monoamine oxidase-A is a major target gene for glucocorticoids in human skeletal muscle cells. FASEB J 19:1359–1361. Medline Giustina A, Veldhuis JD (1998) Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocr Rev 19:717–797. Medline. doi:10.1210/er.19.6.717 Johannsson G, Sunnerhagen KS, Svensson J (2004) Baseline characteristics and the effects of two years of growth hormone replacement therapy in adults with growth hormone deficiency previously treated for Cushing’s disease. Clin Endocrinol (Oxf) 60:550–559. Medline. doi:10.1111/j.1365-2265.2004.02018.x Phillips PJ, Weightman W (2007) Skin and Cushing syndrome. Aust Fam Physician 36:545–547. Medline Stratakis CA, Mastorakos G, Mitsiades NS, Mitsiades CS, Chrousos GP (1998) Skin manifestations of Cushing disease in children and adolescents before and after the resolution of hypercortisolemia. Pediatr Dermatol 15:253–258. Medline. doi:10.1046/j.1525-1470.1998.1998015253.x Reich A, Bednarek-Tupikowska Z, Czarnecka A, Szepietowski JC (2006) Cutaneous manifestations in a patient with a long-term history of untreated ACTH-dependent Cushing’s syndrome. Acta Dermatovenerol Croat 14:30–34. Medline Groves RW, MacDonald LM, MacDonald DM (1990) Profound digital collagen atrophy: a new cutaneous presentation of adrenal-dependent Cushing’s syndrome. Br J Dermatol 123:667–671. Medline. doi:10.1111/j.1365-2133.1990.tb01486.x Kletsas D, Pratsinis H, Gioni V, Pilichos K, Yiacoumettis AM, Tsagarakis S (2007) Prior chronic in vivo glucocorticoid excess leads to an anabolic phenotype and an extension of cellular life span of skin fibroblasts in vitro. Ann N Y Acad Sci 1100:449–454. Medline. doi:10.1196/annals.1395.050 van Rossum EF, Lamberts SW (2004) Polymorphisms in the glucocorticoid receptor gene and their associations with metabolic parameters and body composition. Recent Prog Horm Res 59:333–357. Medline. doi:10.1210/rp.59.1.333 Tomlinson JW, Draper N, Mackie J et al (2002) Absence of Cushingoid phenotype in a patient with Cushing’s disease due to defective cortisone to cortisol conversion. J Clin Endocrinol Metab 87:57–62. Medline. doi:10.1210/jc.87.1.57 Oreffo RO, Cooper C, Mason C, Clements M (2005) Mesenchymal stem cells: lineage, plasticity, and skeletal therapeutic potential. Stem Cell Rev 1:169–178. Medline. doi:10.1385/SCR:1:2:169 Oshina H, Sotome S, Yoshii T et al (2007) Effects of continuous dexamethasone treatment on differentiation capabilities of bone marrow-derived mesenchymal cells. Bone 41:575–583. Medline. doi:10.1016/j.bone.2007.06.022