The physics of fatigue crack initiation

International Journal of Fatigue - Tập 57 - Trang 58-72 - 2013
Michael D. Sangid1
1School of Aeronautics and Astronautics, College of Engineering, Purdue University, 701 W. Stadium Ave., West Lafayette, IN 47907-2045, United States

Tóm tắt

Từ khóa


Tài liệu tham khảo

Stephens, 2001

Polak, 1970, The effect of intermediate annealing on the electrical resistivity and shear stress of fatigued copper, Scr Metall, 4, 761, 10.1016/0036-9748(70)90056-6

Polak, 1987, On the role of point defects in fatigue crack initiation, Mater Sci Eng, 92, 71, 10.1016/0025-5416(87)90157-1

Polak, 1987, Resistivity of fatigued copper single crystals, Mater Sci Eng, 89, 35, 10.1016/0025-5416(87)90247-3

Basinski, 1992, Fundamental aspects of low amplitude cyclic deformation in face-centred cubic crystals, Prog Mater Sci, 36, 89, 10.1016/0079-6425(92)90006-S

Ewing, 1903, The fracture of metals under repeated alternations of stress, Philos Trans Roy Soc Lond, Ser A: Containing Pap Math Phys Charact, 200, 241, 10.1098/rsta.1903.0006

Seeger, 1957, Work-hardening and work-softening of face-centred cubic metal crystals, Phil Mag, 2, 323, 10.1080/14786435708243823

Friedel, 1957, A discussion on work-hardening and fatigue in metals, Proc Roy Soc Lond, Ser A (Math Phys Sci), 242, 145

Basinski, 1980, The temperature dependence of the saturation stress and dislocation substructure in fatigued copper single crystals, Acta Metall, 28, 191, 10.1016/0001-6160(80)90068-1

Coffin LF, Jr. Fatigue. Annual review of materials science, vol. 2. Palo Alto, CA, USA: Annual Review Inc.; 1972. p. 313.

Christ HJ. Cyclic stress–strain response and microstructure. In: ASM handbook: fatigue and fracture; 1996. p. 73–95.

Tschopp, 2009, Microstructure-dependent local strain behavior in polycrystals through in-situ scanning electron microscope tensile experiments, Metall Mater Trans A, 40, 2363, 10.1007/s11661-009-9938-6

Clair, 2011, Strain mapping near a triple junction in strained Ni-based alloy using EBSD and biaxial nanogauges, Acta Mater, 59, 3116, 10.1016/j.actamat.2011.01.051

Abuzaid, 2012, Slip transfer and plastic strain accumulation across grain boundaries in Hastelloy X, J Mech Phys Solids, 60, 1201, 10.1016/j.jmps.2012.02.001

Daly SH. Digital image correlation in experimental mechanics for aerospace materials and structures. In: Encyclopedia of aerospace engineering. John Wiley & Sons, Ltd.; 2010.

Sadananda, 2005, Dislocation processes that affect kinetics of fatigue crack growth, Phil Mag, 85, 189, 10.1080/14786430412331315653

Mughrabi, 2009, Cyclic slip irreversibilities and the evolution of fatigue damage, Metall Mater Trans B, 40, 431, 10.1007/s11663-009-9240-4

Kuhlmann-Wilsdorf, 1977, Dislocation behavior in fatigue, Mater Sci Eng, 27, 137, 10.1016/0025-5416(77)90166-5

Kuhlmann-Wilsdorf, 1989, Theory of plastic deformation: properties of low energy dislocation structures, Mater Sci Eng, A, A113, 1, 10.1016/0921-5093(89)90290-6

Neumann, 1986, Low energy dislocation configurations: a possible key to the understanding of fatigue, Mater Sci Eng, 81, 465, 10.1016/0025-5416(86)90284-3

Neumann, 1987, Dislocation dynamics in fatigue, Phys Scr, T, 537, 10.1088/0031-8949/1987/T19B/035

Yang, 2001, Simulation and observation of dislocation pattern evolution in the early stages of fatigue in a copper single crystal, Mater Sci Eng, A, 299, 51, 10.1016/S0921-5093(00)01415-5

Depres, 2004, Crack initiation in fatigue: experiments and three-dimensional dislocation simulations, Mater Sci Eng A (Struct Mater: Propert, Microstruct Process), 387–389, 288, 10.1016/j.msea.2003.12.084

Shin, 2005, Dislocation dynamics simulations of fatigue of precipitation-hardened materials, Mater Sci Eng A (Struct Mater: Propert Microstruct Process), 400–401, 166, 10.1016/j.msea.2005.01.079

Depres, 2008, A dislocation-based model for low-amplitude fatigue behaviour of face-centred cubic single crystals, Scr Mater, 58, 1086, 10.1016/j.scriptamat.2008.02.027

Brown L. Dislocation and the fatigue strength of metals. In: Ashby M, Bullough R, Hartley C, Hirth J, editors. Dislocation modelling of physcial systems: proceedings of the acta-scripta metallurgica conference. Pergamon Press; 1980. p. 51–68.

Brown, 2000, Dislocation plasticity in persistent slip bands, Mater Sci Eng, A, 285, 35, 10.1016/S0921-5093(00)00662-6

Brown, 2002, A dipole model for the cross-slip of screw dislocations in fcc metals, Philos Mag A (Phys Condens Matter: Struct Defect Mech Propert), 82, 1691

van der Giessen, 1995, Discrete dislocation plasticity: a simple planar model, Modell Simul Mater Sci Eng, 3, 689, 10.1088/0965-0393/3/5/008

Brinckmann S. In: On the role of dislocations on fatigue crack initiation. Netherlands: Zernike Institute for Advanced Materials, University of Groningen; 2005.

Grosskreutz, 1971, The mechanism of metal fatigue. I, Phys Status Solidi B, 47, 11, 10.1002/pssb.2220470102

Grosskreutz, 1971, The mechanisms of metal fatigue II, Phys Status Solidi B, 47, 359, 10.1002/pssb.2220470202

Basinski, 1984, Formation and growth of subcritical fatigue cracks, Scr Metall, 18, 851, 10.1016/0036-9748(84)90409-5

Ma, 1989, Overview of fatigue behavior in copper single crystals. I. Surface morphology and stage I crack initiation sites for tests at constant strain amplitude, Acta Metall, 37, 325, 10.1016/0001-6160(89)90217-4

Ma, 1989, Overview of fatigue behavior in copper single crystals. II. Population, size distribution and growth kinetics of stage I cracks for tests at constant strain amplitude, Acta Metall, 37, 337, 10.1016/0001-6160(89)90218-6

Ma, 1989, Overview of fatigue behavior in copper single crystals. III. Interpretation of crack growth kinetics and a new approach to predict fatigue life based on crack population density in specimens cycled at constant strain amplitude, Acta Metall, 37, 349, 10.1016/0001-6160(89)90219-8

Ma, 1989, Overview of fatigue behavior in copper single crystals. IV. Strain and load interaction effects for tests under variable amplitude, Acta Metall, 37, 357, 10.1016/0001-6160(89)90220-4

Ma, 1989, Overview of fatigue behavior in copper single crystals. V. Short crack growth behavior and a new approach to summing cumulative damage and predicting fatigue life under variable amplitudes, Acta Metall, 37, 369, 10.1016/0001-6160(89)90221-6

Essmann, 1979, Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities, Philos Mag A (Phys Condens Matter Defect Mech Propert), 40, 731

Essmann, 1981, A model of extrusions and intrusions in fatigued metals. I. Point-defect production and the growth of extrusions, Philos Mag A (Phys Condens Matter Defect Mech Propert), 44, 405

Differt, 1986, A model of extrusions and intrusions in fatigued metals. II. Surface roughening by random irreversible slip, Philos Mag A (Phys Condens Matter Defect Mech Propert), 54, 237

Mughrabi, 1978, The cyclic hardening and saturation behaviour of copper single crystals, Mater Sci Eng, 33, 207, 10.1016/0025-5416(78)90174-X

Mughrabi, 1983, Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals, Acta Metall, 31, 1367, 10.1016/0001-6160(83)90007-X

Laird, 1986, Low energy dislocation structures produced by cyclic deformation, Mater Sci Eng, 81, 433, 10.1016/0025-5416(86)90281-8

Mughrabi, 1988, Dislocation clustering and long-range internal stresses in monotonically and cyclically deformed metal crystals, Revue de Physique Appliquee, 23, 367, 10.1051/rphysap:01988002304036700

Holzwarth, 1993, The evolution of persistent slip bands in copper single crystals, Appl Phys A (Solid Surf), A57, 131, 10.1007/BF00331434

Mughrabi, 2009, Cyclic slip irreversibilities and the evolution of fatigue damage, Metall Mater Trans A, 40, 1257, 10.1007/s11661-009-9839-8

Essmann, 1988, The nature of the wall structure in persistent slip bands of fatigued metals, Scr Metall, 22, 1337, 10.1016/S0036-9748(88)80158-3

Mughrabi H, Wang R, Differt K, Essmann U. Fatigue crack initiation by cyclic slip irreversibilities in high-cycle fatigue. Dearborn, MI, USA: ASTM; 1983. p. 5.

Schiller, 1988, Numerical simulation of persistent slip band formation, Acta Metall, 36, 563, 10.1016/0001-6160(88)90089-2

Gregor, 1997, Model of PSB formation, Mater Sci Eng, A, A234–23, 209, 10.1016/S0921-5093(97)00218-9

Repetto, 1997, Micromechanical model of cyclic deformation and fatigue-crack nucleation in f.c.c. single crystals, Acta Mater, 45, 2577, 10.1016/S1359-6454(96)00368-0

Buque, 2001, Dislocation structures in cyclically deformed nickel polycrystals, Mater Sci Eng, A, 300, 254, 10.1016/S0921-5093(00)01784-6

Buque, 2001, Persistent slip bands in cyclically deformed nickel polycrystals, Int J Fatigue, 23, 459, 10.1016/S0142-1123(01)00013-5

Buque, 2001, Effect of grain size and deformation temperature on the dislocation structure in cyclically deformed polycrystalline nickel, Mater Sci Eng A (Struct Mater: Propert Microstruct Process), A319–321, 631, 10.1016/S0921-5093(00)02012-8

Dorr, 1987, Microcracks in fatigued FCC polycrystals by interaction between persistent slip bands and grain boundaries, Cryst Res Technol, 22, 113, 10.1002/crat.2170220124

Blochwitz, 1996, Analysis of activated slip systems in fatigued nickel polycrystals using the EBSD-technique in the scanning electron microscope, Mater Sci Eng A (Struct Mater: Propert Microstruct Process), A210, 42, 10.1016/0921-5093(95)10076-8

Weidner, 2006, Slip activity of persistent slip bands in polycrystalline nickel, Mater Sci Eng A (Struct Mater: Propert Microstruct Process), 435–436, 540, 10.1016/j.msea.2006.07.039

Blochwitz, 1995, Misorientation measurements near grain boundary cracks after fatigue tests, Strength Mater, 27, 3, 10.1007/BF02206406

Blochwitz, 2005, Twin boundaries as crack nucleation sites, Cryst Res Technol, 40, 32, 10.1002/crat.200410305

Zhang, 1998, Fatigue cracking possibility along grain boundaries and persistent slip bands in copper bicrystals, Fatigue Fract Eng Mater Struct, 21, 1307, 10.1046/j.1460-2695.1998.00092.x

Zhang, 1999, Observations on persistent slip bands transferring through a grain boundary in a copper bicrystal by the electron channelling contrast in scanning electron microscopy technique, Philos Mag Lett, 79, 233, 10.1080/095008399177291

Zhang, 2000, Interactions of persistent slip bands with a grain boundary on the common primary slip plane in a copper bicrystal, Philos Mag Lett, 80, 149, 10.1080/095008300176272

Zhang, 2000, Comparison of fatigue cracking possibility along large- and low-angle grain boundaries, Mater Sci Eng A (Struct Mater: Propert Microstruct Process), A284, 285, 10.1016/S0921-5093(00)00796-6

Zhang, 2003, What types of grain boundaries can be passed through by persistent slip bands?, J Mater Res, 18, 1031, 10.1557/JMR.2003.0141

Zhang, 2003, Dependence of intergranular fatigue cracking on the interactions of persistent slip bands with grain boundaries, Acta Mater, 51, 347, 10.1016/S1359-6454(02)00399-3

Kobayashi, 2009, Roles of grain boundary microstructure in high-cycle fatigue of electrodeposited nanocrystalline Ni–P alloy, Scr Mater, 61, 1032, 10.1016/j.scriptamat.2009.08.021

Kronberg, 1949, Secondary recrystallization in copper, Am Inst Mining Metall Engrs – J Met, 1, 501

Grimmer, 1974, Coincidence-site lattices and complete pattern-shift lattices in cubic crystals, Acta Crystallogr, Sec A (Cryst Phys Diffr Theoret Gen Crystallogr), A30, 197, 10.1107/S056773947400043X

Brandon, 1966, The structure of high-angle grain boundaries, Acta Metall, 14, 1479, 10.1016/0001-6160(66)90168-4

Zhang, 2000, Relationship between the fatigue cracking probability and the grain-boundary category, Philos Mag Lett, 80, 483, 10.1080/09500830050057189

Wang, 2001, Orientation dependence of the cyclic deformation behavior and the role of grain boundaries in fatigue damage in copper crystals, Mater Sci Eng, A, 319–321, 63, 10.1016/S0921-5093(01)01055-3

Lim, 1987, Surface intergranular cracking in large strain fatigue, Acta Metall, 35, 1653, 10.1016/0001-6160(87)90113-1

Kobayashi, 2008, Effects of grain boundary- and triple junction-character on intergranular fatigue crack nucleation in polycrystalline aluminum, J Mater Sci, 43, 3792, 10.1007/s10853-007-2236-z

Lin, 1969, Mechanics of a fatigue crack nucleation mechanism, J Mech Phys Solids, 17, 511, 10.1016/0022-5096(69)90006-4

Tanaka, 1981, A dislocation model for fatigue crack initiation, J Appl Mech, 48, 97, 10.1115/1.3157599

Lin, 1986, Fatigue crack initiation on slip bands: theory and experiment, Acta Metall, 34, 619, 10.1016/0001-6160(86)90177-X

Tanaka, 1982, Micromechanical theory of fatigue crack initiation from notches, Mech Mater, 1, 63, 10.1016/0167-6636(82)90024-2

Mura, 1990, A theory of fatigue crack initiation in solids, Trans ASME J Appl Mech, 57, 1, 10.1115/1.2888304

Venkataraman, 1990, Free energy formulation of fatigue crack initiation along persistent slip bands: calculation of S–N curves and crack depths, Acta Metall Mater, 38, 31, 10.1016/0956-7151(90)90132-Z

Mura, 1994, Theory of fatigue crack initiation, Mater Sci Eng, A, A176, 61, 10.1016/0921-5093(94)90959-8

Kruml, 1997, Dislocation structures in the bands of localised cyclic plastic strain in austenitic 316L and austenitic-ferritic duplex stainless steels, Acta Mater, 45, 5145, 10.1016/S1359-6454(97)00178-X

Petersmeier, 1998, Cyclic fatigue loading and characterization of dislocation evolution in the ferritic steel X22CrMoV121, Int J Fatigue, 20, 251, 10.1016/S0142-1123(97)00129-1

Stoltz, 1978, Dislocation–precipitate interaction and cyclic stress–strain behavior of a γ′ strengthened superalloy, Mater Sci Eng, 34, 275, 10.1016/0025-5416(78)90060-5

Fritzemeier, 1988, The cyclic stress-strain behavior of nickel-base superalloys. I. Polycrystals, Acta Metall, 36, 275, 10.1016/0001-6160(88)90004-1

Clavel, 1982, Intergranular fracture associated with heterogeneous deformation modes during low cycle fatigue in a Ni-base superalloy, Scr Metall, 16, 361, 10.1016/0036-9748(82)90150-8

Alexandre, 2004, Modelling the optimum grain size on the low cycle fatigue life of a Ni based superalloy in the presence of two possible crack initiation sites, Scr Mater, 50, 25, 10.1016/j.scriptamat.2003.09.043

Petrenec, 2005, Inhomogeneous dislocation structure in fatigued Inconel 713 LC superalloy at room and elevated temperatures, Mater Sci Eng, A, 400–401, 485, 10.1016/j.msea.2005.01.058

Petrenec, 2007, Effect of temperature on the low cycle fatigue of cast Inconel 792-5A, Key Eng Mater, 0, 383, 10.4028/www.scientific.net/KEM.345-346.383

Petrenec, 2008, Dislocation structures in nickel based superalloy inconel 792–5A fatigued at room temperature and 700C, Mater Sci Forum, 567–568, 429, 10.4028/www.scientific.net/MSF.567-568.429

Cretegny, 2001, AFM characterization of the evolution of surface deformation during fatigue in polycrystalline copper, Acta Mater, 49, 3755, 10.1016/S1359-6454(01)00271-3

Polak, 2003

Polak, 2007, Mechanisms and kinetics of the early fatigue damage in crystalline materials, Mater Sci Eng, A, 468–470, 33, 10.1016/j.msea.2006.06.148

Shyam, 2004, Effects of deformation behavior on fatigue fracture surface morphology in a nickel-base superalloy, Acta Mater, 52, 1503, 10.1016/j.actamat.2003.11.032

Shyam, 2005, A model for slip irreversibility, and its effect on the fatigue crack propagation threshold in a nickel-base superalloy, Acta Mater, 53, 835, 10.1016/j.actamat.2004.10.036

Risbet, 2003, Use of atomic force microscopy to quantify slip irreversibility in a nickel-base superalloy, Scr Mater, 49, 533, 10.1016/S1359-6462(03)00357-9

Risbet, 2008, Some comments about fatigue crack initiation in relation to cyclic slip irreversibility, Eng Fract Mech, 75, 3511, 10.1016/j.engfracmech.2007.04.014

Risbet, 2009, Damage in nickel base superalloy: influence of local parameters measured by electron backscattered diffraction and atomic force microscopy, Scr Mater, 60, 269, 10.1016/j.scriptamat.2008.06.053

Huang, 2008, Plastic behavior of a nickel-based alloy under monotonic-tension and low-cycle-fatigue loading, Int J Plast, 24, 1440, 10.1016/j.ijplas.2007.10.001

Sinclair GM, Craig WJ. Influence of grain size on work hardening and fatigue characteristics of alpha brass, United States; 1952. 18p.

Thompson, 1971, The comparison of yield and fatigue strength dependence on grain size, Scr Metall, 5, 859, 10.1016/0036-9748(71)90059-7

Thompson, 1971, The effect of grain size of fatigue, Acta Metall, 19, 597, 10.1016/0001-6160(71)90012-5

Thompson, 1971, Production and mechanical behavior of very fine-grained copper, Metall Mater Trans A (Phys Metall Mater Sci), 2, 2004

Lukas, 1987, Effect of grain size on the high cycle fatigue behavior of polycrystalline copper, Mater Sci Eng, 85, 67, 10.1016/0025-5416(87)90468-X

Morrison, 1997, Effects of grain size on cyclic plasticity and fatigue crack initiation in nickel, Int J Fatigue, 19, S51, 10.1016/S0142-1123(97)00034-0

Liu, 1999, Dislocation barrier model for fatigue limit – as determined by crack non-initiation and crack non-propagation, Int J Fract, 96, 331, 10.1023/A:1018654430344

Keller, 1989, On the onset of low-energy dislocation substructures in fatigue: grain size effects, Mater Sci Eng A: Struct Mater: Propert Microstruct Process, A113, 267, 10.1016/0921-5093(89)90315-8

Pan, 1996, Grain-boundary structure effects on intergranular stress corrosion cracking of Alloy X-750, Acta Mater, 44, 4685, 10.1016/S1359-6454(96)00125-5

Field, 1992, Interface cavitation damage in polycrystalline copper, Acta Metall Mater, 40, 1145, 10.1016/0956-7151(92)90413-9

Davidson, 2007, Fatigue crack initiation in WASPALOY at 20C, Metall Mater Trans A (Phys Metall Mater Sci), 38 A, 2214, 10.1007/s11661-007-9178-6

Miao, 2009, Crystallographic fatigue crack initiation in nickel-based superalloy Rene 88DT at elevated temperature, Acta Mater, 57, 5964, 10.1016/j.actamat.2009.08.022

Hashimoto, 1999, Fatigue crack nucleation at Σ3(112) boundary in a ferritic stainless steel, Interface Sci, 7, 159, 10.1023/A:1008739820261

Llanes, 1992, The role of annealing twin boundaries in the cyclic deformation of f.c.c. materials, Mater Sci Eng A (Struct Mater: Propert Microstruct Process), A157, 21, 10.1016/0921-5093(92)90094-H

Boettner, 1964, On formation of fatigue cracks at twin boundaries, Phil Mag, 10, 95, 10.1080/14786436408224210

Thompson, 1972, The influence of grain and twin boundaries in fatigue cracking, Acta Metall, 20, 1085, 10.1016/0001-6160(72)90172-1

Qu, 2008, Twin boundaries: strong or weak, Scr Mater, 59, 1131, 10.1016/j.scriptamat.2008.07.037

Guo, 2005, Dislocation evolution in twins of cyclically deformed copper, Philos Mag Lett, 85, 613, 10.1080/09500830500437450

Kim, 1978, Crack nucleation and stage I propagation in high strain fatigue. II. Mechanism, Acta Metall, 26, 789, 10.1016/0001-6160(78)90029-9

Lim, 1985, Continuity as slip screw and mixed crystal dislocations across bicrystals of nickel at 573K, Acta Metall, 33, 1577, 10.1016/0001-6160(85)90057-4

Heinz, 1990, Crack initiation during high cycle fatigue of an austenitic steel, Acta Metall Mater, 38, 1933, 10.1016/0956-7151(90)90305-Z

Peralta, 1994, Deformation from twin-boundary stresses and the role of texture: application to fatigue, Philos Mag A (Phys Condens Matter Defect Mech Propert), 70, 219

Sumigawa, 2004, Nucleation of slip bands near twin boundary in high-cycle fatigue, JSME Int J Ser A (Solid Mech Mater Eng), 47, 98, 10.1299/jsmea.47.98

Lewis, 2008, Determination of critical microstructural features in an austenitic stainless steel using image-based finite element modeling, Metall Mater Trans A, 39 A, 1109, 10.1007/s11661-008-9491-8

Blochwitz, 2003, Influence of texture on twin boundary cracks in fatigued austenitic stainless steel, Mater Sci Eng, A, 339, 318, 10.1016/S0921-5093(02)00126-0

Sangid, 2011, A physically based fatigue model for prediction of crack initiation from persistent slip bands in polycrystals, Acta Mater, 59, 328, 10.1016/j.actamat.2010.09.036

Sangid, 2011, The role of grain boundaries on fatigue crack initiation – an energy approach, Int J Plast, 27, 801, 10.1016/j.ijplas.2010.09.009

Sangid, 2011, An energy-based microstructure model to account for fatigue scatter in polycrystals, J Mech Phys Solids, 59, 595, 10.1016/j.jmps.2010.12.014

Sangid, 2010, Grain boundary characterization and energetics of superalloys, Mater Sci Eng, A, 527, 7115, 10.1016/j.msea.2010.07.062

Sangid, 2011, Energy of slip transmission and nucleation at grain boundaries, Acta Mater, 59, 283, 10.1016/j.actamat.2010.09.032

Sangid, 2012, Energetics of residual dislocations associated with slip–twin and slip–GBs interactions, Mater Sci Eng A, 542, 21, 10.1016/j.msea.2012.02.023

Griffith, 1920, The phenomena of rupture and flow in solids, Roy Soc Lond Philos Trans, 221, 163, 10.1098/rsta.1921.0006

Rice, 1974, Ductile versus brittle behaviour of crystals, Phil Mag, 29, 73, 10.1080/14786437408213555

Huang, 2010, Fatigue-induced reversible/irreversible structural-transformations in a Ni-based superalloy, Int J Plast, 26, 1124, 10.1016/j.ijplas.2010.01.003

Wong, 2011, Evolution of the crystal stress distributions in face-centered cubic polycrystals subjected to cyclic loading, Acta Mater, 59, 6901, 10.1016/j.actamat.2011.07.042

Manonukul, 2004, High- and low-cycle fatigue crack initiation using polycrystal plasticity, Proc Roy Soc Lond Ser A (Math Phys Eng Sci), 460, 1881, 10.1098/rspa.2003.1258

Dunne, 2007, Lengthscale-dependent, elastically anisotropic, physically-based hcp crystal plasticity: application to cold-dwell fatigue in Ti alloys, Int J Plast, 23, 1061, 10.1016/j.ijplas.2006.10.013

Venkataramani, 2008, Microstructural parameters affecting creep induced load shedding in Ti-6242 by a size dependent crystal plasticity FE model, Int J Plast, 24, 428, 10.1016/j.ijplas.2007.05.001

Kirane, 2008, A cold dwell fatigue crack nucleation criterion for polycrystalline Ti-6242 using grain-level crystal plasticity FE model, Int J Fatigue, 30, 2127, 10.1016/j.ijfatigue.2008.05.026

Anahid, 2009, Wavelet decomposed dual-time scale crystal plasticity FE model for analyzing cyclic deformation induced crack nucleation in polycrystals, Modell Simul Mater Sci Eng, 17, 064009, 10.1088/0965-0393/17/6/064009

Chakraborty, 2011, Wavelet transformation based multi-time scale crystal plasticity FEM for cyclic deformation in titanium alloys under dwell load, Finite Elem Anal Des, 47, 610, 10.1016/j.finel.2010.12.014

Shenoy, 2007, Estimating fatigue sensitivity to polycrystalline Ni-base superalloy microstructures using a computational approach, Fatigue Fract Eng Mater Struct, 30, 889, 10.1111/j.1460-2695.2007.01159.x

Shenoy, 2008, Microstructure-sensitive modeling of polycrystalline IN 100, Int J Plast, 24, 1694, 10.1016/j.ijplas.2008.01.001

Tjiptowidjojo, 2009, Microstructure-sensitive notch root analysis for dwell fatigue in Ni-base superalloys, Int J Fatigue, 31, 515, 10.1016/j.ijfatigue.2008.04.007

Przybyla, 2010, Microstructure-sensitive extreme value probabilities for high cycle fatigue of Ni-base superalloy IN100, Int J Plast, 26, 372, 10.1016/j.ijplas.2009.08.001

Zhang, 2010, Simulation of slip band evolution in duplex Ti–6Al–4V, Acta Mater, 58, 1087, 10.1016/j.actamat.2009.10.025

Bozek, 2008, A geometric approach to modeling microstructurally small fatigue crack formation: I. Probabilistic simulation of constituent particle cracking in AA 7075-T651, Modell Simul Mater Sci Eng, 16, 065007, 10.1088/0965-0393/16/6/065007

Hochhalter, 2010, A geometric approach to modeling microstructurally small fatigue crack formation: II. Physically based modeling of microstructure-dependent slip localization and actuation of the crack nucleation mechanism in AA 7075-T651, Modell Simul Mater Sci Eng, 18, 045004, 10.1088/0965-0393/18/4/045004

Hochhalter, 2011, A geometric approach to modeling microstructurally small fatigue crack formation: III. Development of a semi-empirical model for nucleation, Modell Simul Mater Sci Eng, 19, 035008, 10.1088/0965-0393/19/3/035008

Allison, 2006, Integrated computational materials engineering: a new paradigm for the global materials profession, JOM, 58, 25, 10.1007/s11837-006-0223-5

McDowell, 2010, Microstructure-sensitive computational modeling of fatigue crack formation, Int J Fatigue, 32, 1521, 10.1016/j.ijfatigue.2010.01.003

Groeber, 2007, Developing a robust 3-D characterization-representation framework for modeling polycrystalline materials, JOM, 59, 32, 10.1007/s11837-007-0113-5

Lienert, 2011, High-energy diffraction microscopy at the advanced photon source, JOM, 63, 70, 10.1007/s11837-011-0116-0

Poulsen, 2001, Three-dimensional maps of grain boundaries and the stress state of individual grains in polycrystals and powders, J Appl Crystallogr, 34, 751, 10.1107/S0021889801014273

Miller, 2008, Measuring and modeling distributions of stress state in deforming polycrystals, Acta Mater, 56, 3927, 10.1016/j.actamat.2008.04.062

Herbig, 2011, 3-D growth of a short fatigue crack within a polycrystalline microstructure studied using combined diffraction and phase-contrast X-ray tomography, Acta Mater, 59, 590, 10.1016/j.actamat.2010.09.063

Li SF, Lind J, Hefferan CM, Pokharel R, Tan X, Gao Y, Rollett AD, et al. Unpublished work; 2012.