The physics of debris flows

Reviews of Geophysics - Tập 35 Số 3 - Trang 245-296 - 1997
Richard M. Iverson

Tóm tắt

Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid‐fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ∼10 m³ of poorly sorted, water‐saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse‐grained surge fronts have little or no pore fluid pressure. In contrast, finer‐grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate permeability of the debris. Realistic models of debris flows therefore require equations that simulate inertial motion of surges in which high‐resistance fronts dominated by solid forces impede the motion of low‐resistance tails more strongly influenced by fluid forces. Furthermore, because debris flows characteristically originate as nearly rigid sediment masses, transform at least partly to liquefied flows, and then transform again to nearly rigid deposits, acceptable models must simulate an evolution of material behavior without invoking preternatural changes in material properties. A simple model that satisfies most of these criteria uses depth‐averaged equations of motion patterned after those of the Savage‐Hutter theory for gravity‐driven flow of dry granular masses but generalized to include the effects of viscous pore fluid with varying pressure. These equations can describe a spectrum of debris flow behaviors intermediate between those of wet rock avalanches and sediment‐laden water floods. With appropriate pore pressure distributions the equations yield numerical solutions that successfully predict unsteady, nonuniform motion of experimental debris flows.

Từ khóa


Tài liệu tham khảo

Abbott J., 1993, Particulate Two‐Phase Flow, 3

Acrivos A., 1993, Particulate Two‐Phase Flow, 169

10.1007/978-1-4612-4290-1_8

10.1017/S0022112092001988

10.1061/(ASCE)0733-9410(1995)121:7(544)

10.1007/BF02594995

10.1093/qjmam/29.2.209

10.1098/rspa.1954.0186

10.1017/S0022112072002435

Bear J., 1972, Dynamics of Fluids in Porous Media

10.1680/geot.1981.31.4.519

Beverage J. P., 1964, Hyperconcentrations of suspended sediment, J. Hydraul. Div. Am. Soc. Civ. Eng., 90, 117

10.1063/1.1712886

Bird R. B., 1960, Transport Phenomena

10.1515/revce-1983-0102

10.1144/GSL.QJEG.1973.006.03.15

Blake G. R., 1965, Methods of Soil Analysis, 374

Bridgman P. W., 1922, Dimensional Analysis

Bridgwater J., 1978, Inter‐particle percolation: Equipment development and mean percolation velocities, Trans. Inst. Chem. Eng., 56, 157

Bromhead E. N., 1986, The Stability of Slopes

Buckingham E., 1915, Model experiments and the form of empirical equations, Trans. ASME, 37, 263

10.1146/annurev.fl.22.010190.000421

10.1086/629211

10.1007/BF00789326

Casagrande A. Liquefaction and cyclic deformation of sands—A critical review Harvard Soil Mech. Ser. 88 51 1976.

10.1063/1.329164

Chapman S., 1970, Mathematical Theory of Nonuniform Gases

10.1130/REG7-p13

10.1061/(ASCE)0733-9429(1988)114:3(237)

10.1061/(ASCE)0733-9429(1988)114:3(259)

10.1029/93JB02380

Coleman P. F., 1993, A new explanation for debris flow surge phenomena (abstract), Eos Trans. AGU, 74, 154

10.1007/978-3-642-69759-3_9

Debtis Flows/Avalanches: Process Recognition and Mitigation Rev. Eng. Geol. 7J. E.Costa G. F.Wieczorek 239 Geol. Soc. of Am. Boulder Colo. 1987.

Costa J. E. G. P.Williams Debris‐flow dynamics (videotape) U.S. Geol. Surv. Open File Rep.84‐606 22 min. 1984.

10.1103/PhysRevLett.74.3971

10.1007/BF00437302

10.1139/t95-028

10.1029/96JB02486

Daido A., 1971, On the occurrence of mud‐debris flow, Bull. Disaster Prev. Res. Inst. Kyoto Univ., Part 2, 21, 109

10.1007/BF01239474

10.1007/BF01182546

Davies T. R. H. Debris‐flow surges—A laboratory investigation Mitt. 96 122 Versuchsanst. für Wasserbau Hydrologie und Glaziologie Zürich Switzerland 1988.

Davies T. R. H., 1990, Debris‐flow surges—Experimental simulation, N. Z. J. Hydrol., 29, 18

10.1016/0301-9322(94)90011-6

10.1029/JB095iB06p08681

10.1680/geot.1990.40.3.489

10.1002/andp.19063240204

10.1130/REG7-p31

10.1086/629522

Fairchild L. H., 1983, Proceedings of the Symposium on Erosion Control in Volcanic Areas Tech. Mem. 1908, 131

10.1029/GL008i001p00043

10.1016/0009-2509(67)80149-0

10.1061/(ASCE)0733-9429(1995)121:4(355)

10.1680/geot.1967.17.3.261

10.1017/S0022112083003419

10.1122/1.549875

Hampton M. A., 1979, Buoyancy in debris flows, J. Sediment. Petrol., 49, 753

10.1029/95RG03287

10.1029/JB090iB05p03670

10.1029/92JB00173

Heim A., 1932, Bergsturz und Menschenleben

10.1130/SPE189-p103

Henderson F. M., 1966, Open Channel Flow

Hill H. M., 1966, Bed forms due to a fluid stream, J. Hydraul. Div. Am. Soc. Civ. Eng., 92, 127

Hooke R. L., 1987, Slope Stability—Geotechnical Engineering and Geomorphology, 505

10.1016/0167-6636(93)90041-O

Howard T. R., 1988, Landslides, Floods and Marine Effects of the Storm of January 3–5, 1982, in the San Francisco Bay Region, California, 163

10.1130/0016-7606(1975)86<129:CDSSGB>2.0.CO;2

10.1016/0301-9322(86)90031-5

10.1086/629442

10.1139/t95-063

10.1680/geot.1984.34.3.415

10.1061/(ASCE)0733-9429(1994)120:12(1350)

10.1139/t86-021

10.1007/BF01175749

10.1177/030913338300700401

10.1086/628937

10.1086/629006

10.1086/629034

10.1680/geot.1990.40.1.139

Iverson R. M., 1992, Landslides (Proceedings of the Sixth International Symposium on Landslides, 1), 451

10.1007/BF00911548

Iverson R. M. Hydraulic modeling of unsteady debris‐flow surges with solid‐fluid interactions inProceedings of the First International Conference on Debris‐Flow Hazards Mitigation Am. Soc. of Civ. Eng. New York in press 1997.

Iverson R. M., 1987, Erosion and Sedimentation in the Pacific Rim, 155

10.1126/science.246.4931.796

Iverson R. M., 1993, Hydraulic Engineering ‘93 (Proceedings of the 1993 Conference of the Hydraulics Division of the American Society of Civil Engineers), 1604

10.1029/WR022i011p01543

10.1029/91WR02694

Iverson R. M. J. E.Costa R. G.LaHusen Debris‐flow flume at H. J. Andrews Experimental Forest Oregon U.S. Geol. Surv. Open File Rep.92‐483 2 1992.

10.1146/annurev.earth.25.1.85

10.1126/science.255.5051.1523

Jahns R. H. Desert floods Contrib. 499 10–15 Calif. Inst. of Technol. Pasadena 1949.

10.1115/1.3124415

Jenkins J. T., 1994, Proceedings of the International Association for Hydraulic Research International Workshop on Floods and Inundations Related to Large Earth Movements, Trent, Italy, 1994, A6.1

10.1007/978-1-4613-9022-0_5

10.1017/S0022112083001044

Johnson A. M. A model for debris flow Ph.D. dissertation Pa. State Univ. State College 1965.

Johnson A. M., 1970, Physical Processes in Geology

Johnson A. M., 1984, Slope Instability, 257

Johnson G. M.Massoudi K. R.Rajagopal A review of interaction mechanisms in fluid‐solid flowsTech. Rep. DOE/PETC/TR‐90/9 54U.S. Dep. of Energy Pittsburgh Energy Technol. Cent. Pittsburgh Pa. 1990.

10.1016/0009-2509(91)87018-8

Khegai A. Y. N. V.Popov P. A.Plekhanov V. A.Keremkulov Experiments at the Chemolgan debris‐flow testing ground Kazakhstan Landslide News 6 27–28 Jpn. Landslide Soc. Kyoto 1992.

10.1016/0167-6636(93)90042-P

Lambe T. W., 1979, Soil Mechanics, SI Version

Lang R. M. B. R.Leo Model for avalanches in three spatial dimensionsCRREL Rep. 94‐5 23U.S. Army Corps of Eng. Cold Reg. Res. and Eng. Lab. Hanover N.H. 1994.

10.1122/1.549335

Li J., 1983, The main features of the mudflows in Jiang‐Jia Ravine, Z. Geomorphol., 27, 326

Li T., 1983, A model for predicting the extent of a major rockfall, Z. Geomorphol., 27, 473, 10.1127/zfg/27/1983/473

10.1007/BF00874616

10.1098/rspa.1955.0088

Lill T. A critical evaluation of a new method for determining the angle of internal friction for cohesionless sediments B.S. thesis 37 pp. Beloit Coll. Beloit Wis. 1993.

10.1017/S0022112084000586

10.1016/0377-0273(92)90115-T

Major J. J. Experimental studies of deposition by debris flows: Process characteristics of deposits and effects of pore‐fluid pressure 341 pp. Ph.D. dissertation Univ. of Wash. Seattle 1996.

10.1086/515930

10.1029/91WR02834

Major J. J., 1986, Sedimentology and clast orientations of the 18 May 1980 southwest‐flank lahars, Mount St. Helens, Washington, J. Sediment. Petrol., 56, 691

Malekzadeh M. J. Flow of liquid‐solid mixtures down inclined chutes Ph.D. thesis 212 pp. McGill Univ. Montreal Que. Canada 1993.

10.1016/B978-0-444-89213-3.50045-6

Middleton G., 1970, Experimental studies related to the problem of flysch sedimentation, Geol. Assoc. Can. Spec. Pap., 7, 253

Mitchell J. K., 1976, Fundamentals of Soil Behavior

Miyamoto K., 1993, Mud and debris flows, J. Hydrosci. Hydraul. Eng. Jpn. Soc. Civ. Eng., 2, 1

Mohrig D., 1995, Hydroplaning of subaqueous debris flows (abstract), Eos Trans. AGU, 76, F277

10.1144/GSL.QJEG.1974.007.04.09

10.1061/(ASCE)0733-9429(1988)114:8(877)

10.1061/(ASCE)0733-9429(1993)119:2(244)

Ogata A. Theory of dispersion in a granular medium U.S. Geol. Surv. Prof. Pap. 411‐I 34 1970.

Ogawa S., 1978, Proceedings of the U.S.‐Japan Seminar on Continuum‐Mechanics and Statistical Approaches to the Mechanics of Granular Materials, 208

Ohsumi Works Office Debris Flow at Sakurajima 2 81 Jpn. Min. of Constr. Kagoshima 1995.

Okuda S., 1980, Observations on the motion of a debris flow and its geomorphological effects, Z. Geomorphol., 142

10.1103/PhysRevLett.64.2727

Passman S. L., 1986, Compressibility Phenomena in Subsidence, 79

10.1016/0169-555X(91)90022-3

10.1002/esp.3760050302

10.1111/j.1365-3091.1981.tb01662.x

10.1130/0016-7606(1985)96<1056:IAFBOT>2.0.CO;2

Pierson T. C., 1986, Hillslope Processes, 269

10.1016/0377-0273(94)00070-W

10.1130/REG7-p1

10.1029/WR021i010p01511

10.1016/0377-0273(90)90082-Q

10.1016/B978-0-444-41507-3.50016-7

10.1122/1.550692

Prior D. B., 1984, Slope Instability, 419

10.1098/rstl.1857.0003

10.1029/91WR02695

10.1029/RG014i002p00227

10.1111/j.1365-3091.1976.tb00047.x

Roeloffs E., 1996, Poroelastic techniques in the study of earthquake‐induced hydrologic phenomena, Adv. Geophys., 37, 133

10.1016/0012-8252(94)90008-6

10.1103/PhysRevLett.58.1038

Sabo Publicity Center, 1988, Debris flow at Sakurajima Volcano

Sassa K., 1984, Proceedings of the Fourth International Symposium on Landslides, 349

Sassa K., 1985, Proceedings of the Eleventh International Conference on Soil Mechanics and Foundation Engineering, 1173

10.1016/S0065-2156(08)70047-4

Savage S. B., 1987, Developments in Engineering Mechanics, 347

Savage S. B., 1993, Hydraulic Engineering ‘93 (Proceedings of the 1993 Conference of the Hydraulics Division of the American Society of Civil Engineers), 1402

10.1017/S0022112089000340

10.1007/BF01175958

10.1017/S0022112083002827

10.1017/S0022112084001166

Savage W. Z. W. K.Smith A model for the plastic flow of landslides U.S. Geological Survey Prof. Pap. 1385 32 1986.

10.1007/BF01301796

Scott K. M. J. W.Vallance P. T.Pringle Sedimentology behavior and hazards of debris flows at Mount Rainier Washington U.S. Geol. Surv. Prof. Pap. 1547 56 1995.

10.1130/0016-7606(1953)64[547:MOAWSC]2.0.CO;2

Shen H., 1982, Constitutive relationships for solid‐fluid mixtures, J. Eng. Mech. Div. Am. Soc. Civ. Eng., 108, 748

10.1007/BF01182547

10.1007/BF01182548

10.1007/BF00156505

10.1130/REG7-p181

10.1016/0377-0273(84)90002-7

Sitar N., 1992, Stability and Performance of Slopes and Embankments II Proceedings, 834

10.1680/geot.1964.14.2.77

10.1680/geot.1985.35.1.3

Spiegel M. R., 1967, Theoretical Mechanics, Schaum's Outline Series

Suwa H., 1988, Focusing mechanism of large boulders to a debris‐flow front, Trans. Jpn. Geomorphol. Union, 9, 151

Takahashi T., 1978, Mechanical characteristics of debris flow, J. Hydraul. Div. Am. Soc. Civ. Eng., 104, 1153

Takahashi T., 1980, Debris flow on prismatic open channel, J. Hydraul. Div. Am. Soc. Civ. Eng., 106, 381

10.1146/annurev.fl.13.010181.000421

Takahashi T., 1991, Debris Flow

Japan‐China joint research on the prevention from debris flow hazardsT.Takahashi Res. Rep. 03044085 195Grant‐in‐Aid for Scientific Research Jpn. Min. of Educ. Sci. and Cult. Int. Sci. Res. Program Tokyo 1994.

Terzaghi K., 1945, Stress conditions for the failure of concrete and rock, Proc. Am. Soc. Test. Mater., 45, 777

10.1016/0095-8522(65)90016-4

U.S. Geological Survey (USGS) Debris flow hazards in the San Francisco Bay region U.S. Geol. Surv. Fact Sheet 112‐95 4 1995.

10.1061/(ASCE)0733-9410(1995)121:2(163)

Vallance J. W. Experimental and field studies related to the behavior of granular mass flows and the characteristics of their deposits Ph.D. dissertation 197 pp. Mich. Technol. Univ. Houghton 1994.

Vallance J. W., 1997, The Osceola mudflow from Mount Rainier: Sedimentology and hazard implications of a huge clay‐rich debris flow, Geol. Soc. Am. Bull., 109, 143, 10.1130/0016-7606(1997)109<0143:TOMFMR>2.3.CO;2

Vanoni V. A., 1975, Sedimentation Engineering

Varnes D. J., 1978, Landslides—Analysis and Control, 11

10.1007/BF00302050

10.1007/978-94-015-8354-1

Walton O., 1993, Particulate Two‐Phase Flow, 884

Weir G. J., 1982, Kinematic wave theory for Ruapehu lahars, N. Z. J. Sci., 25, 197

Whipple K. X. Debris‐flow fans: Process and form Ph.D. dissertation 205 pp. Univ. of Washington Seattle 1994.

10.1130/0016-7606(1992)104<0887:TIODFR>2.3.CO;2

Wieczorek G. F., 1988, Landslides, Floods and Marine Effects of the Storm of January 3–5, 1982, in the San Francisco Bay Region, California, 133

10.1130/0016-7606(1989)101<0278:TGOTCB>2.3.CO;2

Yamashita S. K.Miyamoto Numerical simulation method of debris movements with a volcanic eruptionJapan‐U.S. Workshop on Snow Avalanche Landslide and Debris Flow Prediction and ControlJpn. Sci. and Technol. AgencyTsukuba 1991.

Yano K., 1965, Fundamental study on mud‐flow, Bull. Disaster Prev. Res. Inst. Kyoto Univ., 14, 69

10.1017/S0022112092003525