The physical character of subaqueous sedimentary density flows and their deposits
Tóm tắt
The complexity of flow and wide variety of depositional processes operating in subaqueous density flows, combined with post‐depositional consolidation and soft‐sediment deformation, often make it difficult to interpret the characteristics of the original flow from the sedimentary record. This has led to considerable confusion of nomenclature in the literature. This paper attempts to clarify this situation by presenting a simple classification of sedimentary density flows, based on physical flow properties and grain‐support mechanisms, and briefly discusses the likely characteristics of the deposited sediments. Cohesive flows are commonly referred to as debris flows and mud flows and defined on the basis of sediment characteristics. The boundary between cohesive and non‐cohesive density flows (frictional flows) is poorly constrained, but dimensionless numbers may be of use to define flow thresholds. Frictional flows include a continuous series from sediment slides to turbidity currents. Subdivision of these flows is made on the basis of the dominant particle‐support mechanisms, which include matrix strength (in cohesive flows), buoyancy, pore pressure, grain‐to‐grain interaction (causing dispersive pressure), Reynolds stresses (turbulence) and bed support (particles moved on the stationary bed). The dominant particle‐support mechanism depends upon flow conditions, particle concentration, grain‐size distribution and particle type. In hyperconcentrated density flows, very high sediment concentrations (>25 volume%) make particle interactions of major importance. The difference between hyperconcentrated density flows and cohesive flows is that the former are friction dominated. With decreasing sediment concentration, vertical particle sorting can result from differential settling, and flows in which this can occur are termed concentrated density flows. The boundary between hyperconcentrated and concentrated density flows is defined by a change in particle behaviour, such that denser or larger grains are no longer fully supported by grain interaction, thus allowing coarse‐grain tail (or dense‐grain tail) normal grading. The concentration at which this change occurs depends on particle size, sorting, composition and relative density, so that a single threshold concentration cannot be defined. Concentrated density flows may be highly erosive and subsequently deposit complete or incomplete Lowe and Bouma sequences. Conversely, hydroplaning at the base of debris flows, and possibly also in some hyperconcentrated flows, may reduce the fluid drag, thus allowing high flow velocities while preventing large‐scale erosion. Flows with concentrations <9% by volume are true turbidity flows (
Từ khóa
Tài liệu tham khảo
Arnott R.W.C., 1989, Bedforms, primary structures and grain fabric in the presence of sediment rain, J. Sed. Petrol., 59, 1062
Bates C.C., 1953, Rational theory of delta formation, AAPG Bull., 37, 2119
Beverage J.P., 1964, Hyperconcentrations of suspended sediment, Proc. Am. Soc. Civil Eng., J. Hydraul. Div., 90, 117
Bjerrum L., 1971, Subaqueous slope failures in Norwegian fjords, Norw. Geotech. Inst. Publ., 88, 1
Bouma A.H.(1962)Sedimentology of Some Flysch Deposits: a Graphic Approach to Facies Interpretation. Elsevier Amsterdam.
Coussot P.(1992)Debris flow rheology‐study of concentrated suspensions. PhD Thesis. L’Institut National Polytechnique Grenoble.
Cremer M.(1983)Approche sédimentologique et géophysique des accumulations turbiditiques. L’éventail profond du Cap Ferret (golfe de Gascogne) la série des grès d’Annot (Alpes de Haute Provence). Thèse Sci. Nat. Bordeaux 1.
Fisher R.V., 1971, Features of coarse‐grained, high‐concentration fluids and their deposits, J. Sed. Petrol., 41, 916
Forel F.A., 1885, Les ravins sous‐lacustres des fleuves glaciaires, CR Acad. Sci. Paris, 101, 725
Forel F.A.(1892)Le Léman: Monographie Limnologique 1 Géographie Hydrographie Géologie Climatologie Hydrologie. F. Rouge Lausanne 543 pp.
Gardner J.V., 1983, Sedimentary processes on the Iberian continental margin viewed by long‐range side‐scan sonar. Part 1: Gulf of Cadiz, Oceanol. Acta, 6, 245
Gennesseaux M., 1971, Enregistrement de courants de turbidité dans la vallée sous‐marine du Var (Alpes‐Maritimes), CR Acad. Sci. Paris, 273, 2456
Gennesseaux M., 1980, Les glissements sous‐marins de la pente continentale niçoise et la rupture de câbles en mer Ligure (Méditerranée Occidentale), CR Acad. Sci. Paris, 290, 959
Hampton M.A., 1972, The role of subaqueous debris flow in generating turbidity currents, J. Sed. Petrol., 42, 775
Hampton M.A., 1975, Competence of fine‐grained debris flows, J. Sed. Petrol., 45, 834
Hand B.M., 1997, Inverse grading resulting from coarse‐sediment transport lag, J. Sed. Res., 67, 124
Hiscott R.N., 1994, Traction‐carpet stratification in turbidites – fact or fiction?, J. Sed. Res., 64, 204
Hiscott R.N., 1995, Traction‐carpet stratification in turbidites – fact or fiction? (reply), J. Sed. Res., 65, 704
Hiscott R.N., 1985, Carbonate debris flows, Cow Head Group, western Newfoundland, J. Sed. Petrol., 55, 735
Johnson A.M.(1970)Physical Processes in Geology. Freeman Cooper San Francisco 577 pp.
Johnson A.M.(1984)Debris flow. In:Slope Instability(Eds D. Brunden and D.B. Prior) pp. 257–362. Wiley Toronto.
Kneller B.C.(1995)Beyond the turbidite paradigm: physical models for deposition of turbidites and their implications for reservoir prediction. In:Characterization of Deep Marine Clastic Systems(Eds A.J. Hartley and D.J. Prosser) Geol. Soc. London Spec. Publ. 94 31–49.
Laval A.(1988)Modélisation d’écoulements de type bouffée de densité. Application à l’interprétation des dépôts turbiditiques. PhD Thesis Université de Bordeaux I 262 pp.
Leeder M.R.(1999)Sedimentology and Sedimentary Basins: from Turbulence to Tectonics. Blackwell Science Oxford.
Lowe D.R., 1982, Sediment gravity flows: II. Depositional models with special reference to the deposits of high‐density turbidity currents, J. Sed. Petrol., 52, 279
Middleton G.V.&Hampton M.A.(1973)Sediment gravity flows: mechanics of flow and deposition. In:Turbidity and Deep Water Sedimentation(Eds G.V. Middleton and A.H. Bouma) SEPM Pacific Section Short Course Lecture Notes 1–38.
Middleton G.V.&Southard J.B.(1984)Mechanics of Sediment Transport 2nd edn.SEPM Eastern Section Short Course 3 Providence 401 pp.
Migeon S.(1997)Les dunes sédimentaires géantes de la levée turbiditique du Var (Mer Ligure France): faciès géométrie et processus de mise en place. Master Thesis Université de Bordeaux 1.
Mulder T., 1996, Classification of offshore mass movements, J. Sed. Res., 66, 43
Mulder T., 1997, Des courants hyperpycnaux dans la tête du canyon du Var Données hydrologiques et observations de terrain, Oceanol. Acta, 20, 607
Mutti E.(1992)Turbidite Sandstones. Agip Instituto di Geologia Università di Parma San Donato Milanese 275 pp.
Mutti E., 1996, The importance of ancient fluvio‐deltaic systems dominated by catastrophic flooding in tectonically active basins, Sci. Geol. Mem., 48, 233
Nardin T.R. Hein F.J. Gorsline D.S. Edwards B.D.(1979)A review of mass movement processes sediment and acoustic characteristics and contrasts in slope and base‐of‐slope systems versus canyon‐fan‐basin floor systems. In:Geology of Continental Slopes(Eds L.J. Doyle and O.H. Pilkey) SEPM Spec. Publ. 27 61–73.
Nemec W.(1995)The dynamics of deltaic suspension plumes. In:Geology of Deltas(Eds M.N. Oti and G. Postma) pp. 31–93. A.A. Balkema Rotterdam.
Nichols R.J.(1995)The liquefaction and remobilization of sandy sediments. In:Characterization of Deep Marine Clastic Systems(Eds A.J. Hartley and D.J. Prosser) Geol. Soc. London Spec. Publ. 94 63–76.
Normark W.R., 1970, Growth patterns of deep‐sea fans, AAPG Bull., 62, 912
Normark W.R., 1989, Observed parameters for turbidity current flow in channels, Reserve Fan, Lake Superior, J. Sed. Petrol., 59, 423
Normark W.R.&Piper D.J.W.(1991)Initiation processes and flow evolution of turbidity currents: implications for the depositional record. In:From Shoreline to Abyss: Contributions in Marine Geology in Honor of Francis Parker Shepard(Ed. R.H. Osborne) SEPM Spec. Publ. 46 207–230.
Pickering K.T. Hiscott R.N. Hein F.J.(1989)Deep Marine Environments: Clastic Sedimentation and Tectonics. Unwin Hyman London 416 pp.
Pierson T.C.&Costa J.C.(1987)A rheologic classification of subaerial sediment‐water flows. In:Debris Flows/Avalanches: Process Recognition and Mitigation(Eds J.E. Costa and G.F. Wieczorek) Geol. Soc. Am. Rev. Eng. Geol. 7 1–12.
Pilkey O.H., 1980, Comparison of sand‐layer geometry on flat floors of 10 modern depositional basins, AAPG Bull., 46, 841
Piper D.J.W.(1978)Turbidites muds and silts on deep‐sea fans and abyssal plains. In:Sedimentation in Submarine Canyons Fans and Trenches(Eds D.J. Stanley and G. Kelling) pp. 163–176. Dowden Hutchinson and Ross Stroudsburg PA.
Piper D.J.W., 1992, Evolution progressive d’un glissement rotationnel en un courant de turbidité: cas du séisme de 1929 des Grand Bancs (Terre Neuve), CR Acad. Sci. Paris, 314, 1057
Plafker G.&Ericksen G.E.(1978)Navados Huascarán avalanches Peru. In:Rockslides and Avalanches Vol. 1.Natural Phenomena(Ed. B. Voight) Dev. Geotech. Eng. 14A 277–314.
Postma H.(1969)Suspended matter in the marine environment. In:Morning Review.Lectures of the Second International Oceanographic Congress Moscow 1966 pp. 213–219.
Prior D.B.&Coleman J.M.(1982)Active slides and flows in underconsolidated marine sediments on the slope of the Mississippi delta. In:Marine Slides and Other Mass Movements(Eds S. Saxov and J.K. Nieuwenhuis) pp. 21–49. Plenum Press New York.
Schwab W.C., 1996, Sediment mass‐flow processes on a depositional lobe, outer Mississippi fan, J. Sed. Res., 66, 916
Shepard F.P.&Dill R.F.(1966)Submarine Canyons and Other Sea‐valleys.Rand McNally Chicago IL 381 pp.
Simpson J.E.(1997)Gravity Currents in the Environment and in the Laboratory 2nd edn. Cambridge University Press Cambridge 244 pp.
Sohn T.K., 1997, On traction‐carpet sedimentation, J. Sed. Res., 67, 502
Stow D.A.V.(1984a)Anatomy of debris flow deposits. In:Initial Reports DSDP 75(Eds W.W. Hay J.‐C. Sibuetet al.). US Government Print Office Washington DC.
Stow D.A.V.(1984b)Deep‐sea clastics: where are we and where are we going?. In:Sedimentology: Recent Developments and Applied Aspects(Eds P.J. Brenchley and B.P.J. William) Geol. Soc. London Spec. Publ. 67–93.
Stow D.A.V.&Piper D.J.W.(1984)Deep‐water fine‐grained sediments: facies models. In:Fine‐Grained Sediments: Deep‐Water Processes and Facies(Eds D.A.V. Stow and D.J.W. Piper) Geol. Soc. London Spec. Publ. 15 611–645.
Unterseh S.(1999)Cartographie et caractérisation du fond marin par sondeur multifaisceaux. PhD Thesis ENSG de Nancy.
Vallance J.W.(2000)Lahars. In:Encyclopedia of Volcanoes(Eds H. Sigurdsson B.F. Houghton S.R. McNutt H. Rymer and J. Stix) pp. 601–615. Academic Press San Diego.
Viana A.R.&Faugères J.‐C.(1998)Upper slope sand deposits: the example of Campos Basin a latest Pleistocene‐Holocene record of the interaction between alongslope and downslope currents. In:Geological Processes on Continental Margins: Sedimentation Mass‐Wasting and Stability(Eds M.S. Stoker D. Evans and A. Cramp) Geol. Soc. London Spec. Publ. 129 287–316.
Van Weering.Tj. C.E. Nielsen T. Kenyon N.H. Akentieva K. Kuijpers A.H.(1998)Large submarine slides on the NE Faeroe continental margin. In:Geological Processes on Continental Margins: Sedimentation Mass‐Wasting and Stability(Eds M.S. Stoker D. Evans and A. Cramp) Geol. Soc. London Spec. Publ. 129 5–17.
Wilson P.A., 1995, Density cascading: Off‐shelf transport, evidence and implications, Bahama Banks, J. Sed. Res., 65, 45