The physical character of subaqueous sedimentary density flows and their deposits

Sedimentology - Tập 48 Số 2 - Trang 269-299 - 2001
Thierry Mulder1, Jan Alexander1
1University of East Anglia, Norwich, United Kingdom

Tóm tắt

The complexity of flow and wide variety of depositional processes operating in subaqueous density flows, combined with post‐depositional consolidation and soft‐sediment deformation, often make it difficult to interpret the characteristics of the original flow from the sedimentary record. This has led to considerable confusion of nomenclature in the literature. This paper attempts to clarify this situation by presenting a simple classification of sedimentary density flows, based on physical flow properties and grain‐support mechanisms, and briefly discusses the likely characteristics of the deposited sediments. Cohesive flows are commonly referred to as debris flows and mud flows and defined on the basis of sediment characteristics. The boundary between cohesive and non‐cohesive density flows (frictional flows) is poorly constrained, but dimensionless numbers may be of use to define flow thresholds. Frictional flows include a continuous series from sediment slides to turbidity currents. Subdivision of these flows is made on the basis of the dominant particle‐support mechanisms, which include matrix strength (in cohesive flows), buoyancy, pore pressure, grain‐to‐grain interaction (causing dispersive pressure), Reynolds stresses (turbulence) and bed support (particles moved on the stationary bed). The dominant particle‐support mechanism depends upon flow conditions, particle concentration, grain‐size distribution and particle type. In hyperconcentrated density flows, very high sediment concentrations (>25 volume%) make particle interactions of major importance. The difference between hyperconcentrated density flows and cohesive flows is that the former are friction dominated. With decreasing sediment concentration, vertical particle sorting can result from differential settling, and flows in which this can occur are termed concentrated density flows. The boundary between hyperconcentrated and concentrated density flows is defined by a change in particle behaviour, such that denser or larger grains are no longer fully supported by grain interaction, thus allowing coarse‐grain tail (or dense‐grain tail) normal grading. The concentration at which this change occurs depends on particle size, sorting, composition and relative density, so that a single threshold concentration cannot be defined. Concentrated density flows may be highly erosive and subsequently deposit complete or incomplete Lowe and Bouma sequences. Conversely, hydroplaning at the base of debris flows, and possibly also in some hyperconcentrated flows, may reduce the fluid drag, thus allowing high flow velocities while preventing large‐scale erosion. Flows with concentrations <9% by volume are true turbidity flows (sensuBagnold, 1962), in which fluid turbulence is the main particle‐support mechanism. Turbidity flows and concentrated density flows can be subdivided on the basis of flow duration into instantaneous surges, longer duration surge‐like flows and quasi‐steady currents. Flow duration is shown to control the nature of the resulting deposits. Surge‐like turbidity currents tend to produce classical Bouma sequences, whose nature at any one site depends on factors such as flow size, sediment type and proximity to source. In contrast, quasi‐steady turbidity currents, generated by hyperpycnal river effluent, can deposit coarsening‐up units capped by fining‐up units (because of waxing and waning conditions respectively) and may also include thick units of uniform character (resulting from prolonged periods of near‐steady conditions). Any flow type may progressively change character along the transport path, with transformation primarily resulting from reductions in sediment concentration through progressive entrainment of surrounding fluid and/or sediment deposition. The rate of fluid entrainment, and consequently flow transformation, is dependent on factors including slope gradient, lateral confinement, bed roughness, flow thickness and water depth. Flows with high and low sediment concentrations may co‐exist in one transport event because of downflow transformations, flow stratification or shear layer development of the mixing interface with the overlying water (mixing cloud formation). Deposits of an individual flow event at one site may therefore form from a succession of different flow types, and this introduces considerable complexity into classifying the flow event or component flow types from the deposits.

Từ khóa


Tài liệu tham khảo

10.1016/0037-0738(90)90062-X

10.1080/00221689609498467

Arnott R.W.C., 1989, Bedforms, primary structures and grain fabric in the presence of sediment rain, J. Sed. Petrol., 59, 1062

10.1098/rspa.1954.0186

10.1098/rspa.1962.0012

10.1002/(SICI)1096-9837(199903)24:3<247::AID-ESP961>3.0.CO;2-1

Bates C.C., 1953, Rational theory of delta formation, AAPG Bull., 37, 2119

10.1017/S0022112081001821

10.1007/BF00301484

Beverage J.P., 1964, Hyperconcentrations of suspended sediment, Proc. Am. Soc. Civil Eng., J. Hydraul. Div., 90, 117

Bjerrum L., 1971, Subaqueous slope failures in Norwegian fjords, Norw. Geotech. Inst. Publ., 88, 1

10.1007/BF01274059

Bouma A.H.(1962)Sedimentology of Some Flysch Deposits: a Graphic Approach to Facies Interpretation. Elsevier Amsterdam.

10.1017/S0022112080000754

10.1002/gj.3350290205

Coussot P.(1992)Debris flow rheology‐study of concentrated suspensions. PhD Thesis. L’Institut National Polytechnique Grenoble.

10.1029/96JB02486

Cremer M.(1983)Approche sédimentologique et géophysique des accumulations turbiditiques. L’éventail profond du Cap Ferret (golfe de Gascogne) la série des grès d’Annot (Alpes de Haute Provence). Thèse Sci. Nat. Bordeaux 1.

10.1016/S1040-6182(99)00011-7

10.1130/0016-7606(1996)108<0253:MAREOT>2.3.CO;2

10.1007/s003670050016

10.1046/j.1365-3091.1998.0153e.x

Fisher R.V., 1971, Features of coarse‐grained, high‐concentration fluids and their deposits, J. Sed. Petrol., 41, 916

10.1130/0091-7613(1983)11<273:FTISGF>2.0.CO;2

10.1086/626171

Forel F.A., 1885, Les ravins sous‐lacustres des fleuves glaciaires, CR Acad. Sci. Paris, 101, 725

Forel F.A.(1892)Le Léman: Monographie Limnologique 1 Géographie Hydrographie Géologie Climatologie Hydrologie. F. Rouge Lausanne 543 pp.

10.1016/0025-3227(85)90148-3

10.1061/(ASCE)0733-9429(1994)120:11(1240)

10.1029/92JC02404

Gardner J.V., 1983, Sedimentary processes on the Iberian continental margin viewed by long‐range side‐scan sonar. Part 1: Gulf of Cadiz, Oceanol. Acta, 6, 245

10.1046/j.1365-3091.1999.00215.x

Gennesseaux M., 1971, Enregistrement de courants de turbidité dans la vallée sous‐marine du Var (Alpes‐Maritimes), CR Acad. Sci. Paris, 273, 2456

Gennesseaux M., 1980, Les glissements sous‐marins de la pente continentale niçoise et la rupture de câbles en mer Ligure (Méditerranée Occidentale), CR Acad. Sci. Paris, 290, 959

10.1306/212F75F4-2B24-11D7-8648000102C1865D

10.1111/j.1365-3091.1992.tb02126.x

10.1063/1.869633

10.1038/362829a0

Hampton M.A., 1972, The role of subaqueous debris flow in generating turbidity currents, J. Sed. Petrol., 42, 775

Hampton M.A., 1975, Competence of fine‐grained debris flows, J. Sed. Petrol., 45, 834

Hand B.M., 1997, Inverse grading resulting from coarse‐sediment transport lag, J. Sed. Res., 67, 124

10.1144/GSL.QJEG.1992.025.01.02

10.1029/JC092iC03p02883

10.2475/ajs.250.12.849

Hiscott R.N., 1994, Traction‐carpet stratification in turbidites – fact or fiction?, J. Sed. Res., 64, 204

Hiscott R.N., 1995, Traction‐carpet stratification in turbidites – fact or fiction? (reply), J. Sed. Res., 65, 704

Hiscott R.N., 1985, Carbonate debris flows, Cow Head Group, western Newfoundland, J. Sed. Petrol., 55, 735

10.1111/j.1365-3091.1990.tb00625.x

10.1111/j.1365-3091.1985.tb00480.x

10.1086/628937

10.1029/97RG00426

10.1126/science.246.4931.796

10.1146/annurev.earth.25.1.85

10.1063/1.881494

Johnson A.M.(1970)Physical Processes in Geology. Freeman Cooper San Francisco 577 pp.

Johnson A.M.(1984)Debris flow. In:Slope Instability(Eds D. Brunden and D.B. Prior) pp. 257–362. Wiley Toronto.

10.1061/(ASCE)0733-9429(1991)117:3(346)

Kneller B.C.(1995)Beyond the turbidite paradigm: physical models for deposition of turbidites and their implications for reservoir prediction. In:Characterization of Deep Marine Clastic Systems(Eds A.J. Hartley and D.J. Prosser) Geol. Soc. London Spec. Publ. 94 31–49.

10.1111/j.1365-3091.1995.tb00395.x

10.1046/j.1365-3091.2000.047s1062.x

10.2475/ajs.250.12.874

10.1111/j.1365-3091.1966.tb01295.x

Laval A.(1988)Modélisation d’écoulements de type bouffée de densité. Application à l’interprétation des dépôts turbiditiques. PhD Thesis Université de Bordeaux I 262 pp.

10.1111/j.1365-3091.1988.tb00905.x

Leeder M.R.(1999)Sedimentology and Sedimentary Basins: from Turbulence to Tectonics. Blackwell Science Oxford.

10.1111/j.1365-3091.1992.tb01993.x

10.1029/94JB02985

Lowe D.R., 1982, Sediment gravity flows: II. Depositional models with special reference to the deposits of high‐density turbidity currents, J. Sed. Petrol., 52, 279

10.1111/j.1365-3091.1988.tb01250.x

10.1046/j.1365-3091.2000.00276.x

10.1086/515930

10.1130/0016-7606(1999)111<1424:DFDEOP>2.3.CO;2

10.1111/j.1365-2117.1994.tb00072.x

10.1139/e66-038

10.1139/e67-025

10.1146/annurev.ea.21.050193.000513

Middleton G.V.&Hampton M.A.(1973)Sediment gravity flows: mechanics of flow and deposition. In:Turbidity and Deep Water Sedimentation(Eds G.V. Middleton and A.H. Bouma) SEPM Pacific Section Short Course Lecture Notes 1–38.

Middleton G.V.&Southard J.B.(1984)Mechanics of Sediment Transport 2nd edn.SEPM Eastern Section Short Course 3 Providence 401 pp.

Migeon S.(1997)Les dunes sédimentaires géantes de la levée turbiditique du Var (Mer Ligure France): faciès géométrie et processus de mise en place. Master Thesis Université de Bordeaux 1.

10.1016/s0025-3227(98)00107-8

10.1130/0016-7606(1998)110<0387:HOSDF>2.3.CO;2

10.1016/0037-0738(89)90015-8

10.1046/j.1365-3091.1998.0160f.x

Mulder T., 1996, Classification of offshore mass movements, J. Sed. Res., 66, 43

10.1086/629747

10.1086/629849

Mulder T., 1997, Des courants hyperpycnaux dans la tête du canyon du Var Données hydrologiques et observations de terrain, Oceanol. Acta, 20, 607

10.1111/j.1365-3091.1997.tb01526.x

10.2110/jsr.68.124

Mutti E.(1992)Turbidite Sandstones. Agip Instituto di Geologia Università di Parma San Donato Milanese 275 pp.

Mutti E., 1996, The importance of ancient fluvio‐deltaic systems dominated by catastrophic flooding in tectonically active basins, Sci. Geol. Mem., 48, 233

Nardin T.R. Hein F.J. Gorsline D.S. Edwards B.D.(1979)A review of mass movement processes sediment and acoustic characteristics and contrasts in slope and base‐of‐slope systems versus canyon‐fan‐basin floor systems. In:Geology of Continental Slopes(Eds L.J. Doyle and O.H. Pilkey) SEPM Spec. Publ. 27 61–73.

Nemec W.(1995)The dynamics of deltaic suspension plumes. In:Geology of Deltas(Eds M.N. Oti and G. Postma) pp. 31–93. A.A. Balkema Rotterdam.

Nichols R.J.(1995)The liquefaction and remobilization of sandy sediments. In:Characterization of Deep Marine Clastic Systems(Eds A.J. Hartley and D.J. Prosser) Geol. Soc. London Spec. Publ. 94 63–76.

Normark W.R., 1970, Growth patterns of deep‐sea fans, AAPG Bull., 62, 912

Normark W.R., 1989, Observed parameters for turbidity current flow in channels, Reserve Fan, Lake Superior, J. Sed. Petrol., 59, 423

10.1086/627725

Normark W.R.&Piper D.J.W.(1991)Initiation processes and flow evolution of turbidity currents: implications for the depositional record. In:From Shoreline to Abyss: Contributions in Marine Geology in Honor of Francis Parker Shepard(Ed. R.H. Osborne) SEPM Spec. Publ. 46 207–230.

10.1016/0025-3227(79)90057-4

10.1016/0025-3227(82)90086-X

10.1017/S0022112086001404

10.1139/t95-027

Pickering K.T. Hiscott R.N. Hein F.J.(1989)Deep Marine Environments: Clastic Sedimentation and Tectonics. Unwin Hyman London 416 pp.

10.1111/j.1365-3091.1981.tb01662.x

Pierson T.C.&Costa J.C.(1987)A rheologic classification of subaerial sediment‐water flows. In:Debris Flows/Avalanches: Process Recognition and Mitigation(Eds J.E. Costa and G.F. Wieczorek) Geol. Soc. Am. Rev. Eng. Geol. 7 1–12.

10.1029/WR021i010p01511

Pilkey O.H., 1980, Comparison of sand‐layer geometry on flat floors of 10 modern depositional basins, AAPG Bull., 46, 841

Piper D.J.W.(1978)Turbidites muds and silts on deep‐sea fans and abyssal plains. In:Sedimentation in Submarine Canyons Fans and Trenches(Eds D.J. Stanley and G. Kelling) pp. 163–176. Dowden Hutchinson and Ross Stroudsburg PA.

10.1111/j.1365-3091.1983.tb00702.x

10.1111/j.1365-3091.1993.tb01350.x

10.1130/0016-7606(1985)96<1508:LQSADF>2.0.CO;2

Piper D.J.W., 1992, Evolution progressive d’un glissement rotationnel en un courant de turbidité: cas du séisme de 1929 des Grand Bancs (Terre Neuve), CR Acad. Sci. Paris, 314, 1057

10.1046/j.1365-3091.1999.00203.x

10.1046/j.1365-3091.1999.00204.x

Plafker G.&Ericksen G.E.(1978)Navados Huascarán avalanches Peru. In:Rockslides and Avalanches Vol. 1.Natural Phenomena(Ed. B. Voight) Dev. Geotech. Eng. 14A 277–314.

10.1046/j.1365-3091.1999.00195.x

Postma H.(1969)Suspended matter in the marine environment. In:Morning Review.Lectures of the Second International Oceanographic Congress Moscow 1966 pp. 213–219.

10.1130/0091-7613(1986)14<291:CFSGDB>2.0.CO;2

10.1016/0037-0738(88)90005-X

Prior D.B.&Coleman J.M.(1982)Active slides and flows in underconsolidated marine sediments on the slope of the Mississippi delta. In:Marine Slides and Other Mass Movements(Eds S. Saxov and J.K. Nieuwenhuis) pp. 21–49. Plenum Press New York.

10.1130/0091-7613(1986)14<581:ASTAAF>2.0.CO;2

10.1126/science.237.4820.1330

10.1038/341047a0

10.2516/ogst:1983017

10.1046/j.1365-3091.1996.d01-21.x

10.1111/j.1365-3091.1976.tb00047.x

10.1111/j.1365-2117.1992.tb00147.x

10.1017/S0022112089000340

10.1016/0264-8172(93)90059-2

Schwab W.C., 1996, Sediment mass‐flow processes on a depositional lobe, outer Mississippi fan, J. Sed. Res., 66, 916

10.1306/D426828E-2B26-11D7-8648000102C1865D

10.1016/s0012-8252(97)81858-2

Shepard F.P.&Dill R.F.(1966)Submarine Canyons and Other Sea‐valleys.Rand McNally Chicago IL 381 pp.

10.1130/0091-7613(1977)5<297:CROLTC>2.0.CO;2

10.1111/j.1365-3091.1991.tb01853.x

Simpson J.E.(1997)Gravity Currents in the Environment and in the Laboratory 2nd edn. Cambridge University Press Cambridge 244 pp.

10.1016/s0098-3004(97)00064-2

10.1130/0016-7606(1986)97<1:CNVSTA>2.0.CO;2

10.1306/D42681A8-2B26-11D7-8648000102C1865D

Sohn T.K., 1997, On traction‐carpet sedimentation, J. Sed. Res., 67, 502

10.1046/j.1365-3091.1999.00241.x

10.1016/0012-821X(93)90028-8

Stow D.A.V.(1984a)Anatomy of debris flow deposits. In:Initial Reports DSDP 75(Eds W.W. Hay J.‐C. Sibuetet al.). US Government Print Office Washington DC.

Stow D.A.V.(1984b)Deep‐sea clastics: where are we and where are we going?. In:Sedimentology: Recent Developments and Applied Aspects(Eds P.J. Brenchley and B.P.J. William) Geol. Soc. London Spec. Publ. 67–93.

Stow D.A.V.&Piper D.J.W.(1984)Deep‐water fine‐grained sediments: facies models. In:Fine‐Grained Sediments: Deep‐Water Processes and Facies(Eds D.A.V. Stow and D.J.W. Piper) Geol. Soc. London Spec. Publ. 15 611–645.

10.1016/0037-0738(95)00125-5

10.1146/annurev.fl.13.010181.000421

Unterseh S.(1999)Cartographie et caractérisation du fond marin par sondeur multifaisceaux. PhD Thesis ENSG de Nancy.

Vallance J.W.(2000)Lahars. In:Encyclopedia of Volcanoes(Eds H. Sigurdsson B.F. Houghton S.R. McNutt H. Rymer and J. Stix) pp. 601–615. Academic Press San Diego.

10.1130/0016-7606(1997)109<0143:TOMFMR>2.3.CO;2

Viana A.R.&Faugères J.‐C.(1998)Upper slope sand deposits: the example of Campos Basin a latest Pleistocene‐Holocene record of the interaction between alongslope and downslope currents. In:Geological Processes on Continental Margins: Sedimentation Mass‐Wasting and Stability(Eds M.S. Stoker D. Evans and A. Cramp) Geol. Soc. London Spec. Publ. 129 287–316.

10.1016/0013-7952(94)90042-6

Van Weering.Tj. C.E. Nielsen T. Kenyon N.H. Akentieva K. Kuijpers A.H.(1998)Large submarine slides on the NE Faeroe continental margin. In:Geological Processes on Continental Margins: Sedimentation Mass‐Wasting and Stability(Eds M.S. Stoker D. Evans and A. Cramp) Geol. Soc. London Spec. Publ. 129 5–17.

10.1038/332626a0

Wilson P.A., 1995, Density cascading: Off‐shelf transport, evidence and implications, Bahama Banks, J. Sed. Res., 65, 45

10.1016/s0169-555x(98)00021-x