Đường dẫn quang hô hấp tham gia vào phản ứng phòng thủ chống lại sự nhiễm bệnh nấm bột ở hoa hồng hạt dẻ

Springer Science and Business Media LLC - Tập 39 - Trang 8187-8195 - 2012
Ming Huang1,2, Qiang Xu1,2, Xiuxin Deng1,2
1Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China
2National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China

Tóm tắt

Hoa hồng hạt dẻ (Rosa roxburghii Tratt), một loại cây ăn trái không trồng được, dễ bị nhiễm nấm bột. Một macro-array tùy chỉnh quy mô nhỏ đã được lắp ráp từ các bản sao cDNA từ thư viện lai tĩnh điện được làm giàu cho các bản sao về phòng thủ và được sử dụng để sàng lọc các gen thể hiện khác biệt được kích hoạt bởi sự nhiễm nấm bột. Ba gen quang hô hấp, mã hóa cho tiểu đơn vị nhỏ của RuBisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase), hoạt hóa RuBisCO và aminotransferase serine-glyoxylate, đã được xác định trong quá trình sàng lọc này. Phân tích RT-PCR định lượng của ba gen này cho thấy chúng được điều chỉnh tăng lên đáng kể 16 giờ sau khi vật chủ bị nhiễm nấm bột, và các thử nghiệm ở mức độ enzym đã xác nhận hoạt động enzym cao 24 giờ sau khi nhiễm. Trong số sáu phytohormone được thử nghiệm, axit salicylic (SA) đã kích thích rõ rệt sự biểu hiện của chúng, và phân tích HPLC cho thấy rằng SA tích lũy trong lá sau khi nhiễm nấm.

Từ khóa

#Hoa hồng hạt dẻ #nấm bột #đường dẫn quang hô hấp #axit salicylic #biểu hiện gen #phòng thủ thực vật

Tài liệu tham khảo

Wen X, Xu Q, Cao Q, Deng X (2006) Promising genetic resources for resistance to powdery mildew in chestnut rose (Rosa roxburghii) and its relatives in China. N Z J Crop Hortic Sci 34(2):183–188 Xu Q, Wen XP, Deng XX (2007) Cloning of two classes of PR genes and the development of SNAP markers for powdery mildew resistance loci in chestnut rose (Rosa roxburghii Tratt). Mol Breed 19(2):179–191 Bent AF, Mackey D (2007) Elicitors, effectors, and R genes: The new paradigm and a lifetime supply of questions. Annu Rev Phytopathol 45:399–436 Eckardt NA (2004) Aminotransferases confer “enzymatic resistance” to downy mildew in melon. Plant Cell 16(1):1–3 Bohman S, Wang M, Dixelius C (2002) Arabidopsis thaliana-derived resistance against Leptosphaeria maculans in a Brassica napus genomic background. Theor Appl Genet 105(4):498–504 Okinaka Y, Yang CH, Herman E, Kinney A, Keen NT (2002) The P34 syringolide elicitor receptor interacts with a soybean photorespiration enzyme, NADH-dependent hydroxypyruvate reductase. Mol Plant Microbe In 15(12):1213–1218 Taler D, Galperin M, Benjamin I, Cohen Y, Kenigsbuch D (2004) Plant eR genes that encode photorespiratory enzymes confer resistance against disease. Plant Cell 16(1):172–184 Jones AME, Thomas V, Bennett MH, Mansfield J, Grant M (2006) Modifications to the Arabidopsis defense proteome occur prior to significant transcriptional change in response to inoculation with Pseudomonas syringae. Plant Physiol 142(4):1603–1620 Foyer CH, Bloom AJ, Queval G, Noctor G (2009) Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. Annu Rev Plant Biol 60:455–484 Wang W, Yang X, Tangchaiburana S, Ndeh R, Markham JE, Tsegaye Y, Dunn TM, Wang GL, Bellizzi M, Parsons JF, Morrissey D, Bravo JE, Lynch DV, Xiao S (2008) An inositol phosphorylceramide synthase is involved in regulation of plant programmed cell death associated with defense in Arabidopsis. Plant Cell 20(11):3163–3179 Bednarek P, Pislewska-Bednarek M, Svatos A, Schneider B, Doubsky J, Mansurova M, Humphry M, Consonni C, Panstruga R, Sanchez-Vallet A, Molina A, Schulze-Lefert P (2009) A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323(5910):101–106 Schaefer SC (2004) Characterization and expression of plant defense genes in peach and tomato. Ph.D dissertation, University of Illinois, Urbana Xu Q, Wen X, Deng X (2008) Genomic organization, rapid evolution and meiotic instability of nucleotide-binding-site-encoding genes in a new fruit crop, “chestnut rose”. Genetics 178(4):2081–2091 Xu Q, Wen X, Tao N, Hu Z, Yue H, Deng X (2006) Extraction of high quality of RNA and construction of a suppression subtractive hybridization (SSH) library from chestnut rose (Rosa roxburghii Tratt). Biotechnol Lett 28(8):587–591 Yan ZF, Dolstra O, Prins TW, Stam P, Visser PB (2006) Assessment of partial resistance to powdery mildew (Podosphaera pannosa) in a tetraploid rose population using a spore-suspension inoculation method. Eur J Plant Pathol 114(3):301–308 Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley—powdery mildew interaction. Plant J 11(6):1187–1194 Christeller JT, Laing WA (1979) Effects of manganese ions and magnesium ions on the activity of soya-bean ribulose bisphosphate carboxylase/oxygenase. Biochem J 183(3):747–750 Christeller JT, Tolbert NE (1978) Phosphoglycolate phosphatase: purification and properties. J Biol Chem 253(6):1780–1785 Macheroux P, Massey V, Thiele DJ, Volokita M (1991) Expression of spinach glycolate oxidase in Saccharomyces cerevisiae: purification and characterization. Biochemistry 30(18):4612–4619 Raskin I, Turner IM, Melander WR (1989) Regulation of heat production in the inflorescences of an Arum lily by endogenous salicylic acid. Proc Natl Acad Sci USA 86(7):2214–2218 Wingler A, Lea PJ, Quick WP, Leegood RC (2000) Photorespiration: metabolic pathways and their role in stress protection. Philos Trans R Soc Lond B Biol Sci 355(1402):1517–1529 Jones JDG, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329 Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29(1):185–212 Benjamin I, Kenigsbuch D, Galperin M, Abrameto JA, Cohen Y (2009) Cisgenic melons over expressing glyoxylate-aminotransferase are resistant to downy mildew. Eur J Plant Pathol 125(3):355–365 Tanou G, Job C, Rajjou L, Arc E, Belghazi M, Diamantidis G, Molassiotis A, Job D (2009) Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J 60(5):795–804 Widjaja I, Naumann K, Roth U, Wolf N, Mackey D, Dangl JL, Scheel D, Lee J (2009) Combining subproteome enrichment and Rubisco depletion enables identification of low abundance proteins differentially regulated during plant defense. Proteomics 9(1):138–147 Moreno JI, Martin R, Castresana C (2005) Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress. Plant J 41(3):451–463 Gong HJ, Zhu XY, Chen KM, Wang SM, Zhang CL (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169(2):313–321 Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130(3):1143–1151 Hattendorf A, Debener T (2007) Molecular characterization of NBS-LRR-RGAs in the rose genome. Physiol Plant 129(4):775–786 Fourmann M, Chariot F, Froger N, Delourme R, Brunel D (2001) Expression, mapping, and genetic variability of Brassica napus disease resistance gene analogues. Genome 44(6):1083–1099 Nair RA, Thomas G (2007) Isolation, characterization and expression studies of resistance gene candidates (RGCs) from Zingiber spp. Theor Appl Genet 116(1):123–134 Wojtaszek P (1997) Oxidative burst: an early plant response to pathogen infection. Biochem J 322(Pt 3):681–692 Doke N, Miura Y, Sanchez LM, Park HJ, Noritake T, Yoshioka H, Kawakita K (1996) The oxidative burst protects plants against pathogen attack: mechanism and role as an emergency signal for plant bio-defence—a review. Gene 179(1):45–51 Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399 Robert-Seilaniantz A, Navarro L, Bari R, Jones JD (2007) Pathological hormone imbalances. Curr Opin Plant Biol 10(4):372–379 Spletzer ME, Enyedi AJ (1999) Salicylic acid induces resistance to Alternaria solani in hydroponically grown tomato. Phytopathology 89(9):722–727 Saikia R, Singh T, Kumar R, Srivastava J, Srivastava AK, Singh K, Arora DK (2003) Role of salicylic acid in systemic resistance induced by Pseudomonas fluorescens against Fusarium oxysporum f. sp ciceri in chickpea. Microbiol Res 158(3):203–213 Galis I, Smith JL, Jameson PE (2004) Salicylic acid-, but not cytokinin-induced, resistance to WClMV is associated with increased expression of SA-dependent resistance genes in Phaseolus vulgaris. J Plant Physiol 161(4):459–466 Sparla F, Rotino L, Valgimigli MC, Pupillo P, Trost P (2004) Systemic resistance induced by benzothiadiazole in pear inoculated with the agent of fire blight (Erwinia amylovora). Sci Hortic Amsterdam 101(3):269–279 Renard-Merlier D, Randoux B, Nowak E, Farcy F, Durand R, Reignault P (2007) Iodus 40, salicylic acid, heptanoyl salicylic acid and trehalose exhibit different efficacies and defence targets during a wheat/powdery mildew interaction. Phytochemistry 68(8):1156–1164 Crampton BG, Hein I, Berger DK (2009) Salicylic acid confers resistance to a biotrophic rust pathogen, Puccinia substriata, in pearl millet (Pennisetum glaucum). Mol Plant Pathol 10(2):291–304 Wang WM, Wen YQ, Berkey R, Xiao SY (2009) Specific targeting of the Arabidopsis resistance protein RPW8.2 to the interfacial membrane encasing the fungal haustorium renders broad-spectrum resistance to powdery mildew. Plant Cell 21(9):2898–2913