The persistence of the Chekanov–Eliashberg algebra
Tóm tắt
We apply the barcodes of persistent homology theory to the c Chekanov–Eliashberg algebra of a Legendrian submanifold to deduce displacement energy bounds for arbitrary Legendrians. We do not require the full Chekanov–Eliashberg algebra to admit an augmentation as we linearize the algebra only below a certain action level. As an application we show that it is not possible to
$$C^0$$
-approximate a stabilized Legendrian by a Legendrian that admits an augmentation.
Tài liệu tham khảo
Barannikov, S.A.: The framed Morse complex and its invariants. In: Arnold, V.I. (ed.) Singularities and Bifurcations. Advances in Soviet Mathematics, vol. 21, pp. 93–115. Amer. Math. Soc, Providence, RI (1994)
Bourgeois, F., Chantraine, B.: Bilinearized Legendrian contact homology and the augmentation category. J. Symplectic Geom. 12(3), 553–583 (2014)
Buhovsky, L., Humilière, V., Seyfaddini, S.: The action spectrum and \(C^0\) symplectic topology (2018). arXiv:1808.09790
Chantraine, B., Dimitroglou Rizell, G., Ghiggini, P., Golovko, R.: Geometric generation of the wrapped Fukaya category of Weinstein manifolds and sectors (2017). arXiv:1712.09126
Chekanov, Y.V.: Lagrangian intersections, symplectic energy, and areas of holomorphic curves. Duke Math. J. 95(1), 213–226 (1998)
Dimitroglou Rizell, G.: Legendrian ambient surgery and Legendrian contact homology. J. Symplectic Geom. 14(3), 811–901 (2016)
Dimitroglou Rizell, G., Sullivan, M.G.: An energy-capacity inequality for Legendrian submanifolds. J. Topol. Anal. 12(3), 547–623 (2020). https://doi.org/10.1142/S1793525319500572
Ekholm, T., Eliashberg, Y., Murphy, E., Smith, I.: Constructing exact Lagrangian immersions with few double points. Geom. Funct. Anal. 23(6), 1772–1803 (2013)
Ekholm, T., Etnyre, J., Sullivan, M.: The contact homology of Legendrian submanifolds in \({\mathbf{R}}^{2n+1}\). J. Differ. Geom. 71(2), 177–305 (2005)
Ekholm, T., Etnyre, J., Sullivan, M.: Non-isotopic Legendrian submanifolds in \({\mathbf{R}}^{2n+1}\). J. Differ. Geom. 71(1), 85–128 (2005)
Ekholm, T., Etnyre, J., Sullivan, M.: Orientations in Legendrian contact homology and exact Lagrangian immersions. Int. J. Math. 16(5), 453–532 (2005)
Ekholm, T., Etnyre, J., Sullivan, M.: Legendrian contact homology in \(P\times { R}\). Trans. Am. Math. Soc. 359(7), 3301–3335 (2007). (electronic)
Ekholm, T., Etnyre, John B., Sabloff, J.M.: A duality exact sequence for Legendrian contact homology. Duke Math. J. 150(1), 1–75 (2009)
Ekholm, T., Kálmán, Tamás: Isotopies of Legendrian 1-knots and Legendrian 2-tori. J. Symplectic Geom. 6(4), 407–460 (2008)
Entov, M., Polterovich, L.: Lagrangian tetragons and instabilities in hamiltonian dynamics. Nonlinearity 30(1), 13 (2017)
Floer, A.: Morse theory for Lagrangian intersections. J. Differ. Geom. 28(3), 513–547 (1988)
Fuchs, D., Ishkhanov, T.: Invariants of Legendrian knots and decompositions of front diagrams. Mosc. Math. J. 4(3), 707–717 (2004). 783
Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Displacement of polydisks and Lagrangian Floer theory. J. Symplectic Geom. 11(2), 231–268 (2013)
Geiges, H.: An Introduction to Contact Topology. Cambridge Studies in Advanced Mathematics, vol. 109. Cambridge University Press, Cambridge (2008)
Hofer, H.: On the topological properties of symplectic maps. Proc. R. Soc. Edinb. Sect. A 115(1–2), 25–38 (1990)
Kislev, A., Shelukhin, E.: Bounds on spectral norms and barcodes (2018). arXiv:1810.09865
Laudenbach, F., Sikorav, J.-C.: Hamiltonian disjunction and limits of Lagrangian submanifolds. Int. Math. Res. Not. 4:161 ff (1994). approx. 8 pp. (electronic)
Murphy, E.: Loose Legendrian embeddings in high dimensional contact manifolds (2012). arXiv:1201.2245
Polterovich, L., Shelukhin, E.: Autonomous Hamiltonian flows, Hofer’s geometry and persistence modules. Sel. Math. (N.S.) 22(1), 227–296 (2016)
Polterovich, L., Shelukhin, E., Stojisavljević, V.: Persistence modules with operators in Morse and Floer theory. Mosc. Math. J. 17(4), 757–786 (2017)
Rosen, D., Zhang, J.: Chekanov’s dichotomy in contact topology (2017). arXiv:1808.08459
Sabloff, J.M.: Augmentations and rulings of Legendrian knots. Int. Math. Res. Not. 19, 1157–1180 (2005)
Siebert, B., Tian, G.: On the holomorphicity of genus two Lefschetz fibrations. Ann. Math. (2) 161(2), 959–1020 (2005)
Strängberg, D.: Legendrian approximations. Master’s thesis, Uppsala University, Algebra and Geometry (2014). http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-227505
Usher, M., Zhang, J.: Persistent homology and Floer–Novikov theory. Geom. Topol. 20(6), 3333–3430 (2016)