The pathophysiology of hypertension in patients with obesity

Nature Reviews Endocrinology - Tập 10 Số 6 - Trang 364-376 - 2014
Vincent G. DeMarco1, Annayya R. Aroor1, James R. Sowers1
1Internal Medicine, University of Missouri, Columbia School of Medicine, One Hospital Drive, Columbia, MO 65212, USA.

Tóm tắt

Từ khóa


Tài liệu tham khảo

Malik, V. S., Willett, W. C. & Hu, F. B. Global obesity: trends, risk factors and policy implications. Nat. Rev. Endocrinol. 9, 13–27 (2013).

Thomsen, B. L., Ekstrøm, C. T. & Sørensen, T. I. Development of the obesity epidemic in Denmark: cohort, time and age effects among boys born 1930–1975. Int. J. Obes. Relat. Metab. Disord. 23, 693–701 (1999).

Heimburger, D. C. et al. A festschrift for Roland L. Weinsier: nutrition scientist, educator, and clinician. Obes. Res. 11, 1246–1262 (2003).

Keith, S. W. et al. Putative contributors to the secular increase in obesity: exploring the roads less traveled. Int. J. Obes (Lond.) 30, 1585–1594 (2006).

McAllister, E. J. et al. Ten putative contributors to the obesity epidemic. Crit. Rev. Food Sci. Nutr. 49, 868–913 (2009).

Sørensen, T. I. Conference on “Multidisciplinary approaches to nutritional problems”. Symposium on “Diabetes and health”. Challenges in the study of causation of obesity. Proc. Nutr. Soc. 68, 43–54 (2009).

Sowers, J. R. Diabetes mellitus and vascular disease. Hypertension 61, 943–947 (2013).

Flegal, K. M., Carroll, M. D., Ogden, C. L. & Curtin, L. R. Prevalence and trends in obesity among US adults, 1999–2008. JAMA 303, 235–241 (2010).

Ogden, C. L. et al. Prevalence of overweight and obesity in the United States, 1999–2004. JAMA 295, 1549–1555 (2006).

Sowers, J. R., Whaley-Connel, A. T. & Hayden, M. R. The role of overweight and obesity in the cardiorenal syndrome. Cardiorenal Med. 1, 5–12 (2011).

Yach, D., Stuckler, D. & Brownell, K. D. Epidemiologic and economic consequences of the global epidemics of obesity and diabetes. Nat. Med. 12, 62–66 (2006).

Kannel, W. B., Brand, N., Skinner, J. J. Jr, Dawber, T. R. & McNamara, P. M. The relation of adiposity to blood pressure and development of hypertension. The Framingham study. Ann. Intern. Med. 67, 48–59 (1967).

Bramlage, P. et al. Hypertension in overweight and obese primary care patients is highly prevalent and poorly controlled. Am. J. Hypertens. 17, 904–910 (2004).

Krauss, R. M., Winston, M., Fletcher, B. J. & Grundy, S. M. Obesity: impact on cardiovascular disease. Circulation 98, 1472–1476 (1998).

Garrison, R. J., Kannel, W. B., Stokes, J. 3rd & Castelli, W. P. Incidence and precursors of hypertension in young adults: the Framingham Offspring Study. Prev. Med. 16, 235–251 (1987).

Brown, C. D. et al. Body mass index and the prevalence of hypertension and dyslipidemia. Obes. Res. 8, 605–619 (2000).

Shihab, H. M. et al. Body mass index and risk of incident hypertension over the life course: the Johns Hopkins Precursors Study. Circulation 126, 2983–2989 (2012).

Droyvold, W. B., Midthjell, K., Nilsen, T. I. & Holmen, J. Change in body mass index and its impact on blood pressure: a prospective population study. Int. J. Obes. (Lond.) 29, 650–655 (2005).

Vague, J. The degree of masculine differentiation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease. Am. J. Clin. Nutr. 4, 20–34 (1956).

Kissebah, A. H. et al. Relation of body fat distribution to metabolic complications of obesity. J. Clin. Endocrinol. Metab. 54, 254–260 (1982).

Krotkiewski, M., Björntorp, P., Sjöström, L. & Smith, U. Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution. J. Clin. Invest. 72, 1150–1162 (1983).

Cassano, P. A., Segal, M. R., Vokonas, P. S. & Weiss, S. T. Body fat distribution, blood pressure, and hypertension. A prospective cohort study of men in the normative aging study. Ann. Epidemiol. 1, 33–48 (1990).

Lapidus, L. et al. Distribution of adipose tissue and risk of cardiovascular disease and death: a 12 year follow up of participants in the population study of women in Gothenburg, Sweden. Br. Med. J. (Clin. Res. Ed.) 289, 1257–1261 (1984).

Larsson, B. et al. Abdominal adipose tissue distribution, obesity, and risk of cardiovascular disease and death: 13 year follow up of participants in the study of men born in 1913. Br. Med. J. (Clin. Res. Ed.) 288, 1401–1404 (1984).

Alberti, K. G. & Zimmet, P. Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med. 15, 539–553 (1998).

Alberti, K. G. et al. Harmonizing the metabolic syndrome. A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120, 1640–1645 (2009).

Neter, J. E., Stam, B. E., Kok, F. J., Grobbee, D. E. & Geleijnse, J. M. Influence of weight reduction on blood pressure: a meta-analysis of randomized controlled trials. Hypertension 42, 878–884 (2003).

Appel, L. J. et al. Dietary approaches to prevent and treat hypertension: a scientific statement from the American Heart Association. Hypertension 47, 296–308 (2006).

Landsberg, L. et al. Obesity-related hypertension: pathogenesis, cardiovascular risk, and treatment—a position paper of the The Obesity Society and The American Society of Hypertension. Obesity (Silver Spring) 21, 8–24 (2013).

Kotchen, T. A. Obesity-related hypertension: epidemiology, pathophysiology, and clinical management. Am. J. Hypertens. 23, 1170–1178 (2010).

Esler, M. et al. Mechanisms of sympathetic activation in obesity-related hypertension. Hypertension 48, 787–796 (2006).

Henry, S. L. et al. Developmental origins of obesity-related hypertension. Clin. Exp. Pharmacol. Physiol. 39, 799–806 (2012).

Rumantir, M. S. et al. Neural mechanisms in human obesity-related hypertension. J. Hypertens. 17, 1125–1133 (1999).

Grassi, G. et al. Adrenergic and reflex abnormalities in obesity-related hypertension. Hypertension 36, 538–542 (2000).

Zhao, D. et al. Dietary factors associated with hypertension. Nat. Rev. Cardiol. 8, 456–465 (2011).

Aghamohammadzadeh, R. & Heagerty, A. M. Obesity-related hypertension: epidemiology, pathophysiology, treatments, and the contribution of perivascular adipose tissue. Ann. Med. 44 (Suppl. 1), S74–S84 (2012).

Johnson, R. J. et al. Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes 62, 3307–3315 (2013).

Jordan, J. et al. Joint statement of the European Association for the Study of Obesity and the European Society of Hypertension: obesity and difficult to treat arterial hypertension. J. Hypertens. 30, 1047–1055 (2012).

Messerli, F. H. et al. Disparate cardiovascular findings in men and women with essential hypertension. Ann. Intern. Med. 107, 158–161 (1987).

Aroor, A. R., McKarns, S., Demarco, V. G., Jia, G. & Sowers, J. R. Maladaptive immune and inflammatory pathways lead to cardiovascular insulin resistance. Metabolism 62, 1543–1552 (2013).

Huxley, R., Barzi, F. & Woodward, M. Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies. BMJ 332, 73–78 (2006).

Barrett-Connor, E. et al. Women and heart disease: the role of diabetes and hyperglycemia. Arch. Intern. Med. 164, 934–942 (2004).

Howard, B. V. et al. Adverse effects of diabetes on multiple cardiovascular disease risk factors in women. The Strong Heart Study. Diabetes Care 21, 1258–1265 (1998).

Okosun, I. S., Prewitt, T. E. & Cooper, R. S. Abdominal obesity in the United States: prevalence and attributable risk of hypertension. J. Hum. Hypertens. 13, 425–430 (1999).

Huang, Z. et al. Body weight, weight change, and risk for hypertension in women. Ann. Intern. Med. 128, 81–88 (1998).

Engeli, S. et al. Weight loss and the renin-angiotensin-aldosterone system. Hypertension 45, 356–362 (2005).

Li, M., Sloboda, D. M. & Vickers, M. H. Maternal obesity and developmental programming of metabolic disorders in offspring: evidence from animal models. Exp. Diabetes Res. 2011, 592408 (2011).

Fullston, T. et al. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J. 27, 4226–4243 (2013).

Bray, G. A., Nielsen, S. J. & Popkin, B. M. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am. J. Clin. Nutr. 79, 537–543 (2004).

Khitan, Z. & Kim, D. H. Fructose: a key factor in the development of metabolic syndrome and hypertension. J. Nutr. Metab. 2013, 682673 (2013).

Hallfrisch, J. Metabolic effects of dietary fructose. FASEB J. 4, 2652–2660 (1990).

Nguyen, S., Choi, H. K., Lustig, R. H. & Hsu, C. Y. Sugar-sweetened beverages, serum uric acid, and blood pressure in adolescents. J. Pediatr. 154, 807–813 (2009).

D'Angelo, G., Elmarakby, A. A., Pollock, D. M. & Stepp, D. W. Fructose feeding increases insulin resistance but not blood pressure in Sprague-Dawley rats. Hypertension 46, 806–811 (2005).

Vasdev, S., Gill, V., Parai, S. & Gadag, V. Fructose-induced hypertension in Wistar-Kyoto rats: interaction with moderately high dietary salt. Can. J. Physiol. Pharmacol. 85, 413–421 (2007).

Tapia, E. et al. Synergistic effect of uricase blockade plus physiological amounts of fructose-glucose on glomerular hypertension and oxidative stress in rats. Am. J. Physiol. Renal Physiol. 304, F727–F736 (2013).

Weisbrod, R. M. et al. Arterial stiffening precedes systolic hypertension in diet-induced obesity. Hypertension 62, 1105–1110 (2013).

Madero, M., Perez-Pozo, S. E., Jalal, D., Johnson, R. J. & Sanchez-Lozada, L. G. Dietary fructose and hypertension. Curr. Hypertens. Rep. 13, 29–35 (2011).

He, F. J. & MacGregor, G. A. Effect of modest salt reduction on blood pressure: a meta-analysis of randomized trials. Implications for public health. J. Hum. Hypertens. 16, 761–770 (2002).

[No authors listed] Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. Intersalt Cooperative Research Group. BMJ 297, 319–328 (1988).

Simopoulos, A. P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 56, 365–379 (2002).

Morris, M. C., Sacks, F. & Rosner, B. Does fish oil lower blood pressure? A meta-analysis of controlled trials. Circulation 88, 523–533 (1993).

Appel, L. J., Miller, E. R. 3rd, Seidler, A. J. & Whelton, P. K. Does supplementation of diet with 'fish oil' reduce blood pressure? A meta-analysis of controlled clinical trials. Arch. Intern. Med. 153, 1429–1438 (1993).

Hu, F. B. & Manson, J. E. Omega-3 fatty acids and secondary prevention of cardiovascular disease—is it just a fish tale?: comment on “Efficacy of omega-3 fatty acid supplements (eicosapentaenoic acid and docosahexaenoic acid) in the secondary prevention of cardiovascular disease”. Arch. Intern. Med. 172, 694–696 (2012).

Appel, L. J. et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N. Engl. J. Med. 336, 1117–1124 (1997).

Hord, N. G., Tang, Y. & Bryan, N. S. Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am. J. Clin. Nutr. 90, 1–10 (2009).

Coles, L. T. & Clifton, P. M. Effect of beetroot juice on lowering blood pressure in free-living, disease-free adults: a randomized, placebo-controlled trial. Nutr. J. 11, 106 (2012).

Siervo, M., Lara, J., Ogbonmwan, I. & Mathers, J. C. Inorganic nitrate and beetroot juice supplementation reduces blood pressure in adults: a systematic review and meta-analysis. J. Nutr. 143, 818–826 (2013).

Moncada, S., Palmer, R. M. & Higgs, E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43, 109–142 (1991).

Harris, K., Kassis, A., Major, G. & Chou, C. J. Is the gut microbiota a new factor contributing to obesity and its metabolic disorders? J. Obes. 2012, 879151 (2012).

Tilg, H. & Kaser, A. Gut microbiome, obesity, and metabolic dysfunction. J. Clin. Invest. 121, 2126–2132 (2011).

Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

Ley, R. E. et al. Obesity alters gut microbial ecology. Proc. Natl Acad. Sci. USA 102, 11070–11075 (2005).

Geurts, L. et al. Altered gut microbiota and endocannabinoid system tone in obese and diabetic leptin-resistant mice: impact on apelin regulation in adipose tissue. Front. Microbiol. 2, 149 (2011).

Murphy, E. F. et al. Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut 59, 1635–1642 (2010).

Shen, J., Obin, M. S. & Zhao, L. The gut microbiota, obesity and insulin resistance. Mol. Aspects Med. 34, 39–58 (2013).

Kootte, R. S. et al. The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus. Diabetes Obes. Metab. 14, 112–120 (2012).

Delzenne, N. M., Neyrinck, A. M., Backhed, F. & Cani, P. D. Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat. Rev. Endocrinol. 7, 639–646 (2011).

Kurukulasuriya, L. R., Stas, S., Lastra, G., Manrique, C. & Sowers, J. R. Hypertension in obesity. Med. Clin. North Am. 95, 903–917 (2011).

Slomko, H., Heo, H. J. & Einstein, F. H. Minireview: Epigenetics of obesity and diabetes in humans. Endocrinology 153, 1025–1030 (2012).

Sharma, A. M. Is there a rationale for angiotensin blockade in the management of obesity hypertension? Hypertension 44, 12–19 (2004).

Messerli, F. H. et al. Obesity and essential hypertension. Hemodynamics, intravascular volume, sodium excretion, and plasma renin activity. Arch. Intern. Med. 141, 81–85 (1981).

Strazzullo, P. et al. Altered renal sodium handling in men with abdominal adiposity: a link to hypertension. J. Hypertens. 19, 2157–2164 (2001).

McCurley, A. et al. Direct regulation of blood pressure by smooth muscle cell mineralocorticoid receptors. Nat. Med. 18, 1429–1433 (2012).

Bender, S. B., McGraw, A. P., Jaffe, I. Z. & Sowers, J. R. Mineralocorticoid receptor-mediated vascular insulin resistance: an early contributor to diabetes-related vascular disease? Diabetes 62, 313–319 (2013).

Hayden, M. R. & Tyagi, S. C. Uric acid: A new look at an old risk marker for cardiovascular disease, metabolic syndrome, and type 2 diabetes mellitus: The urate redox shuttle. Nutr. Metab. (Lond.) 1, 10 (2004).

Zhong, J., Rao, X. & Rajagopalan, S. An emerging role of dipeptidyl peptidase 4 (DPP4) beyond glucose control: potential implications in cardiovascular disease. Atherosclerosis 226, 305–314 (2013).

Schleithoff, C., Voelter-Mahlknecht, S., Dahmke, I. N. & Mahlknecht, U. On the epigenetics of vascular regulation and disease. Clin. Epigenetics 4, 7 (2012).

Ordovas, J. M. & Smith, C. E. Epigenetics and cardiovascular disease. Nat. Rev. Cardiol. 7, 510–519 (2010).

Ortega, F. J. et al. Targeting the circulating microRNA signature of obesity. Clin. Chem. 59, 781–792 (2013).

Williams, M. D. & Mitchell, G. M. MicroRNAs in insulin resistance and obesity. Exp. Diabetes Res. 2012, 484696 (2012).

Nistala, R. et al. Prenatal programming and epigenetics in the genesis of the cardiorenal syndrome. Cardiorenal Med. 1, 243–254 (2011).

Ganu, R. S., Harris, R. A., Collins, K. & Aagaard, K. M. Early origins of adult disease: approaches for investigating the programmable epigenome in humans, nonhuman primates, and rodents. ILAR J. 53, 306–321 (2012).

Barker, D. J. Intrauterine programming of adult disease. Mol. Med. Today 1, 418–423 (1995).

Gillman, M. W. Developmental origins of health and disease. N. Engl. J. Med. 353, 1848–1850 (2005).

Femia, R. et al. Carotid intima-media thickness in confirmed prehypertensive subjects: predictors and progression. Arterioscler. Thromb. Vasc. Biol. 27, 2244–2249 (2007).

Cavalcante, J. L., Lima, J. A., Redheuil, A. & Al-Mallah, M. H. Aortic stiffness: current understanding and future directions. J. Am. Coll. Cardiol. 57, 1511–1522 (2011).

Liao, D. et al. Arterial stiffness and the development of hypertension. The ARIC study. Hypertension 34, 201–206 (1999).

Aroor, A. R. et al. The role of tissue renin-angiotensin-aldosterone system in the development of endothelial dysfunction and arterial stiffness. Front. Endocrinol. 4, 161 (2013).

Stenmark, K. R. et al. The adventitia: essential regulator of vascular wall structure and function. Ann. Rev. Physiol. 75, 23–47 (2013).

Sehgel, N. L. et al. Increased vascular smooth muscle cell stiffness; a novel mechanism for aortic stiffness in hypertension. Am. J. Physiol. Heart Circ. Physiol. 305, H1281–H1287 (2013).

Sandoo, A., van Zanten, J. J., Metsios, G. S., Carroll, D. & Kitas, G. D. The endothelium and its role in regulating vascular tone. Open Cardiovasc. Med. J. 4, 302–312 (2010).

Li, R. et al. Vascular insulin resistance in prehypertensive rats: role of PI3-kinase/Akt/eNOS signaling. Eur. J. Pharmacol. 628, 140–147 (2010).

Muniyappa, R. & Sowers, J. R. Role of insulin resistance in endothelial dysfunction. Rev. Endocr. Metab. Disord. 14, 5–12 (2013).

Aroor, A. R., Mandavia, C. H. & Sowers, J. R. Insulin resistance and heart failure: molecular mechanisms. Heart Fail. Clin. 8, 609–617 (2012).

Brillante, D. G., O'Sullivan, A. J. & Howes, L. G. Arterial stiffness in insulin resistance: the role of nitric oxide and angiotensin II receptors. Vasc. Health Risk Manag. 5, 73–78 (2009).

DeMarco, V. G., Johnson, M. S., Whaley-Connell, A. T. & Sowers, J. R. Cytokine abnormalities in the etiology of the cardiometabolic syndrome. Curr. Hypertens. Rep. 12, 93–98 (2010).

Leal Vde, O. & Mafra, D. Adipokines in obesity. Clin. Chim. Acta 419, 87–94 (2013).

Dorresteijn, J. A., Visseren, F. L. & Spiering, W. Mechanisms linking obesity to hypertension. Obes. Rev. 13, 17–26 (2012).

Brown, N. J. Contribution of aldosterone to cardiovascular and renal inflammation and fibrosis. Nat. Rev. Nephrol. 9, 459–469 (2013).

Johnson, R. J., Rodriguez-Iturbe, B., Kang, D. H., Feig, D. I. & Herrera-Acosta, J. A unifying pathway for essential hypertension. Am. J. Hypertens. 18, 431–440 (2005).

Montecucco, F., Pende, A., Quercioli, A. & Mach, F. Inflammation in the pathophysiology of essential hypertension. J. Nephrol. 24, 23–34 (2011).

Harrison, D. G., Marvar, P. J. & Titze, J. M. Vascular inflammatory cells in hypertension. Front. Physiol. 3, 128 (2012).

DeFronzo, R. A., Davidson, J. A. & Del Prato, S. The role of the kidneys in glucose homeostasis: a new path towards normalizing glycaemia. Diabetes Obes. Metab. 14, 5–14 (2012).

Kanai, Y., Lee, W. S., You, G., Brown, D. & Hediger, M. A. The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose. J. Clin. Invest. 93, 397–404 (1994).

Rahmoune, H. et al. Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes 54, 3427–3434 (2005).

Tabatabai, N. M., Sharma, M., Blumenthal, S. S. & Petering, D. H. Enhanced expressions of sodium-glucose cotransporters in the kidneys of diabetic Zucker rats. Diabetes Res. Clin. Pract. 83, e27–e30 (2009).

Vallon, V. et al. Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Am. J. Physiol. Renal Physiol. 304, F156–F167 (2013).

Vallon, V., Richter, K., Blantz, R. C., Thomson, S. & Osswald, H. Glomerular hyperfiltration in experimental diabetes mellitus: potential role of tubular reabsorption. J. Am. Soc. Nephrol. 10, 2569–2576 (1999).

Lee, Y. J., Lee, Y. J. & Han, H. J. Regulatory mechanisms of Na(+)/glucose cotransporters in renal proximal tubule cells. Kidney Int. Suppl. 106, S27–S35 (2007).

Bautista, R. et al. Angiotensin II-dependent increased expression of Na+-glucose cotransporter in hypertension. Am. J. Physiol. Renal Physiol. 286, F127–F133 (2004).

Ghezzi, C. & Wright, E. M. Regulation of the human Na+-dependent glucose cotransporter hSGLT2. Am. J. Physiol. Cell Physiol. 303, C348–C354 (2012).

Ferrannini, E., Ramos, S. J., Salsali, A., Tang, W. & List, J. F. Dapagliflozin monotherapy in type 2 diabetic patients with inadequate glycemic control by diet and exercise: a randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Care 33, 2217–2224 (2010).

Bailey, C. J., Gross, J. L., Pieters, A., Bastien, A. & List, J. F. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebo-controlled trial. Lancet 375, 2223–2233 (2010).

Nauck, M. A. et al. Dapagliflozin versus glipizide as add-on therapy in patients with type 2 diabetes who have inadequate glycemic control with metformin: a randomized, 52-week, double-blind, active-controlled noninferiority trial. Diabetes Care 34, 2015–2022 (2011).

Hall, J. E. et al. Impact of the obesity epidemic on hypertension and renal disease. Curr. Hypertens. Rep. 5, 386–392 (2003).

O'Dea, K., Esler, M., Leonard, P., Stockigt, J. R. & Nestel, P. Noradrenaline turnover during under- and over-eating in normal weight subjects. Metabolism 31, 896–899 (1982).

Kassab, S. et al. Renal denervation attenuates the sodium retention and hypertension associated with obesity. Hypertension 25, 893–897 (1995).

Egan, B. M., Schork, N. J. & Weder, A. B. Regional hemodynamic abnormalities in overweight men. Focus on alpha-adrenergic vascular responses. Am. J. Hypertens. 2, 428–434 (1989).

Agapitov, A. V., Correia, M. L., Sinkey, C. A. & Haynes, W. G. Dissociation between sympathetic nerve traffic and sympathetically mediated vascular tone in normotensive human obesity. Hypertension 52, 687–695 (2008).

Lambert, G. W., Straznicky, N. E., Lambert, E. A., Dixon, J. B. & Schlaich, M. P. Sympathetic nervous activation in obesity and the metabolic syndrome—causes, consequences and therapeutic implications. Pharmacol. Ther. 126, 159–172 (2010).

Hall, J. E. et al. Obesity-induced hypertension: role of sympathetic nervous system, leptin, and melanocortins. J. Biol. Chem. 285, 17271–17276 (2010).

Lohmeier, T. E. & Iliescu, R. The sympathetic nervous system in obesity hypertension. Curr. Hypertens. Rep. 15, 409–416 (2013).

Sawicki, P. T., Baba, T., Berger, M. & Starke, A. Normal blood pressure in patients with insulinoma despite hyperinsulinemia and insulin resistance. J. Am. Soc. Nephrol. 3, S64–S68 (1992).

Anderson, E. A., Hoffman, R. P., Balon, T. W., Sinkey, C. A. & Mark, A. L. Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J. Clin. Invest. 87, 2246–2252 (1991).

Gao, Q. et al. Disruption of neural signal transducer and activator of transcription 3 causes obesity, diabetes, infertility, and thermal dysregulation. Proc. Natl Acad. Sci. USA 101, 4661–4666 (2004).

Smith, M. M. & Minson, C. T. Obesity and adipokines: effects on sympathetic overactivity. J. Physiol. 590, 1787–1801 (2012).

Lurbe, E. et al. Added impact of obesity and insulin resistance in nocturnal blood pressure elevation in children and adolescents. Hypertension 51, 635–641 (2008).

Demarco, V. G. et al. Obesity-related alterations in cardiac lipid profile and nondipping blood pressure pattern during transition to diastolic dysfunction in male db/db mice. Endocrinology 154, 159–171 (2013).

Ohkubo, T. et al. Prognostic significance of the nocturnal decline in blood pressure in individuals with and without high 24-h blood pressure: the Ohasama study. J. Hypertens. 20, 2183–2189 (2002).

Dangardt, F. et al. Reduced cardiac vagal activity in obese children and adolescents. Clin. Physiol. Funct. Imaging 31, 108–113 (2011).

Silverberg, D. S. & Oksenberg, A. Are sleep-related breathing disorders important contributing factors to the production of essential hypertension? Curr. Hypertens. Rep. 3, 209–215 (2001).

Logan, A. G. et al. High prevalence of unrecognized sleep apnoea in drug-resistant hypertension. J. Hypertens. 19, 2271–2277 (2001).

Lavie, P. & Hoffstein, V. Sleep apnea syndrome: a possible contributing factor to resistant. Sleep 24, 721–725 (2001).

Grassi, G. et al. Obstructive sleep apnea-dependent and -independent adrenergic activation in obesity. Hypertension 46, 321–325 (2005).

Narkiewicz, K., van de Borne, P. J., Cooley, R. L., Dyken, M. E. & Somers, V. K. Sympathetic activity in obese subjects with and without obstructive sleep apnea. Circulation 98, 772–776 (1998).

Goodfriend, T. L. & Calhoun, D. A. Resistant hypertension, obesity, sleep apnea, and aldosterone: theory and therapy. Hypertension 43, 518–524 (2004).

Witkowski, A. et al. Effects of renal sympathetic denervation on blood pressure, sleep apnea course, and glycemic control in patients with resistant hypertension and sleep apnea. Hypertension 58, 559–565 (2011).

McCurley, A., McGraw, A., Pruthi, D. & Jaffe, I. Z. Smooth muscle cell mineralocorticoid receptors: role in vascular function and contribution to cardiovascular disease. Pflugers Arch. 465, 1661–1670 (2013).

Ruster, C. & Wolf, G. The role of the renin-angiotensin-aldosterone system in obesity-related renal diseases. Semin. Nephrol. 33, 44–53 (2013).

Hall, J. E. et al. Hypertension: physiology and pathophysiology. Compr. Physiol. 2, 2393–2442 (2012).

Hayden, M. R. et al. Possible mechanisms of local tissue renin-angiotensin system activation in the cardiorenal metabolic syndrome and type 2 diabetes mellitus. Cardiorenal Med. 1, 193–210 (2011).

Engeli, S., Negrel, R. & Sharma, A. M. Physiology and pathophysiology of the adipose tissue renin-angiotensin system. Hypertension 35, 1270–1277 (2000).

Kumar, R., Thomas, C. M., Yong, Q. C., Chen, W. & Baker, K. M. The intracrine renin-angiotensin system. Clin. Sci. (Lond.) 123, 273–284 (2012).

Szasz, T., Bomfim, G. F. & Webb, R. C. The influence of perivascular adipose tissue on vascular homeostasis. Vasc. Health Risk Manag. 9, 105–116 (2013).

Yiannikouris, F. et al. Adipocyte deficiency of angiotensinogen prevents obesity-induced hypertension in male mice. Hypertension 60, 1524–1530 (2012).

Bentley-Lewis, R. et al. Body mass index predicts aldosterone production in normotensive adults on a high-salt diet. J. Clin. Endocrinol. Metab. 92, 4472–4475 (2007).

Ehrhart-Bornstein, M., Arakelyan, K., Krug, A. W., Scherbaum, W. A. & Bornstein, S. R. Fat cells may be the obesity-hypertension link: human adipogenic factors stimulate aldosterone secretion from adrenocortical cells. Endocr. Res. 30, 865–870 (2004).

Ehrhart-Bornstein, M. et al. Human adipocytes secrete mineralocorticoid-releasing factors. Proc. Natl Acad. Sci. USA 100, 14211–14216 (2003).

Jeon, J. H. et al. A novel adipokine CTRP1 stimulates aldosterone production. FASEB J. 22, 1502–1511 (2008).

Blanco-Rivero, J. et al. Participation of prostacyclin in endothelial dysfunction induced by aldosterone in normotensive and hypertensive rats. Hypertension 46, 107–112 (2005).

Garg, R., Hurwitz, S., Williams, G. H., Hopkins, P. N. & Adler, G. K. Aldosterone production and insulin resistance in healthy adults. J. Clin. Endocrinol. Metab. 95, 1986–1990 (2010).

Kithas, P. A. & Supiano, M. A. Spironolactone and hydrochlorothiazide decrease vascular stiffness and blood pressure in geriatric hypertension. J. Am. Geriatr. Soc. 58, 1327–1332 (2010).

Druppel, V. et al. Long-term application of the aldosterone antagonist spironolactone prevents stiff endothelial cell syndrome. FASEB J. 27, 3652–3659 (2013).

Garg, R., Kneen, L., Williams, G. H. & Adler, G. K. Effect of mineralocorticoid receptor antagonist on insulin resistance and endothelial function in obese subjects. Diabetes Obes. Metab. 165, 268–272 (2014).

Pulakat, L. et al. Adaptive mechanisms to compensate for overnutrition-induced cardiovascular abnormalities. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R885–R895 (2011).

Hwang, M. H. et al. Mineralocorticoid receptors modulate vascular endothelial function in human obesity. Clin. Sci. (Lond.) 125, 513–520 (2013).

Schafer, N. et al. Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity. Eur. Heart J. 34, 3515–3524 (2013).

Byrd, J. B. & Brook, R. D. A critical review of the evidence supporting aldosterone in the etiology and its blockade in the treatment of obesity-associated hypertension. J. Hum. Hypertens. 28, 3–9 (2014).

Tomaschitz, A., Pilz, S., Ritz, E., Obermayer-Pietsch, B. & Pieber, T. R. Aldosterone and arterial hypertension. Nat. Rev. Endocrinol. 6, 83–93 (2010).

Ryan, M. J. An update on immune system activation in the pathogenesis of hypertension. Hypertension 62, 226–230 (2013).

Schiffrin, E. L. Immune mechanisms in hypertension and vascular injury. Clin. Sci. (Lond.) 126, 267–274 (2014).

Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007).

Britton, K. A. & Fox, C. S. Perivascular adipose tissue and vascular disease. Clin. Lipidol. 6, 79–91 (2011).

Kalupahana, N. S., Moustaid-Moussa, N. & Claycombe, K. J. Immunity as a link between obesity and insulin resistance. Mol. Aspects Med. 33, 26–34 (2012).

Zhong, J. et al. T cell costimulation protects obesity-induced adipose inflammation and insulin resistance. Diabetes http://dx.doi.org/10.2337/db13-1094 .

Liu, G. et al. Phenotypic and functional switch of macrophages induced by regulatory CD4+CD25+ T cells in mice. Immunol. Cell Biol. 89, 130–142 (2011).

Kassan, M., Galan, M., Partyka, M., Trebak, M. & Matrougui, K. Interleukin-10 released by CD4(+)CD25(+) natural regulatory T cells improves microvascular endothelial function through inhibition of NADPH oxidase activity in hypertensive mice. Arterioscler. Thromb. Vasc. Biol. 31, 2534–2542 (2011).

Ohshima, K. et al. Roles of interleukin 17 in angiotensin II type 1 receptor-mediated insulin resistance. Hypertension 59, 493–499 (2012).

Stienstra, R., Tack, C. J., Kanneganti, T. D., Joosten, L. A. & Netea, M. G. The inflammasome puts obesity in the danger zone. Cell Metab. 15, 10–18 (2012).

Akasheh, R. T., Pang, J., York, J. M. & Fantuzzi, G. New pathways to control inflammatory responses in adipose tissue. Curr. Opin. Pharmacol. 13, 613–617 (2013).

Rathinam, V. A., Vanaja, S. K. & Fitzgerald, K. A. Regulation of inflammasome signaling. Nat. Immunol. 13, 333–332 (2012).

Conforti-Andreoni, C. et al. Uric acid-driven Th17 differentiation requires inflammasome-derived IL-1 and IL-18. J. Immunol. 187, 5842–5850 (2011).

Guzik, T. J. et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J. Exp. Med. 204, 2449–2460 (2007).

Kasal, D. A. et al. T regulatory lymphocytes prevent aldosterone-induced vascular injury. Hypertension 59, 324–330 (2012).

de Kloet, A. D. et al. Neuroimmune communication in hypertension and obesity: a new therapeutic angle? Pharmacol. Ther. 138, 428–440 (2013).

Harrison, D. G. et al. Inflammation, immunity, and hypertension. Hypertension 57, 132–140 (2011).

Abboud, F. M., Harwani, S. C. & Chapleau, M. W. Autonomic neural regulation of the immune system: implications for hypertension and cardiovascular disease. Hypertension 59, 755–762 (2012).

Dias da Silva, V. J. & Paton, J. F. Introduction: the interplay between the autonomic and immune systems. Exp. Physiol. 97, 1143–1145 (2012).

Ganta, C. K. et al. Central angiotensin II-enhanced splenic cytokine gene expression is mediated by the sympathetic nervous system. Am. J. Physiol. Heart Circ. Physiol. 289, H1683–H1691 (2005).

Turak, O. et al. Serum uric acid, inflammation, and nondipping circadian pattern in essential hypertension. J. Clin. Hypertens. (Greenwich) 15, 7–13 (2013).

Perez-Pozo, S. E. et al. Excessive fructose intake induces the features of metabolic syndrome in healthy adult men: role of uric acid in the hypertensive response. Int. J. Obes. (Lond.) 34, 454–461 (2010).

Chaudhary, K., Kunal, M., Sowers, J. & Aroor, A. Uric acid—key ingredient in the recipe for cardiorenal metabolic syndrome. Cardiorenal Med. 3, 208–220 (2013).

Baldwin, W. et al. Hyperuricemia as a mediator of the proinflammatory endocrine imbalance in the adipose tissue in a murine model of the metabolic syndrome. Diabetes 60, 1258–1269 (2011).

Mazzali, M. et al. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension 38, 1101–1106 (2001).

Tran, L. T., Yuen, V. G. & McNeill, J. H. The fructose-fed rat: a review on the mechanisms of fructose-induced insulin resistance and hypertension. Mol. Cell. Biochem. 332, 145–159 (2009).

Aroor, A. et al. DPP-4 inhibitors as therapeutic modulators of immune cell function and associated cardiovascular and renal insulin resistance in obesity and diabetes. Cardiorenal Med. 3, 48–56 (2013).

Ussher, J. R. & Drucker, D. J. Cardiovascular biology of the incretin system. Endocr. Rev. 33, 187–215 (2012).

Lamers, D. et al. Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome. Diabetes 60, 1917–1925 (2011).

Wang, B. et al. Blood pressure-lowering effects of GLP-1 receptor agonists exenatide and liraglutide: a meta-analysis of clinical trials. Diabetes Obes. Metab. 15, 737–749 (2013).

Aroor, A. R. et al. Dipeptidylpeptidase inhibition is associated with improvement in blood pressure and diastolic function in insulin resistant male Zucker obese rats. Endocrinology 154, 2501–2513 (2013).

Kroller-Schon, S. et al. Glucose-independent improvement of vascular dysfunction in experimental sepsis by dipeptidyl-peptidase 4 inhibition. Cardiovasc. Res. 96, 140–149 (2012).

Hocher, B., Reichetzeder, C. & Alter, M. L. Renal and cardiac effects of DPP4 inhibitors—from preclinical development to clinical research. Kidney Blood Press. Res. 36, 65–84 (2012).

Asferg, C. L. et al. Relative atrial natriuretic peptide deficiency and inadequate renin and angiotensin II suppression in obese hypertensive men. Hypertension 62, 147–153 (2013).

Yazbeck, R., Howarth, G. S. & Abbott, C. A. Dipeptidyl peptidase inhibitors, an emerging drug class for inflammatory disease? Trends Pharmacol. Sci. 30, 600–607 (2009).

Shirakawa, J. et al. Diet-induced adipose tissue inflammation and liver steatosis are prevented by DPP-4 inhibition in diabetic mice. Diabetes 60, 1246–1257 (2011).

Shah, Z. et al. Long-term dipeptidyl-peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis. Circulation 124, 2338–2349 (2011).

Hadjiyanni, I., Siminovitch, K. A., Danska, J. S. & Drucker, D. J. Glucagon-like peptide-1 receptor signalling selectively regulates murine lymphocyte proliferation and maintenance of peripheral regulatory T cells. Diabetologia 53, 730–740 (2010).

McGill, J. B. et al. Potentiation of abnormalities in myocardial metabolism with the development of diabetes in women with obesity and insulin resistance. J. Nucl. Cardiol. 18, 421–429 (2011).

Peterson, L. R. et al. Alterations in left ventricular structure and function in young healthy obese women: assessment by echocardiography and tissue Doppler imaging. J. Am. Coll. Cardiol. 43, 1399–1404 (2004).

Manrique, C. et al. Obesity and insulin resistance induce early development of diastolic dysfunction in young female mice fed a western diet. Endocrinology 154, 3632–3642 (2013).

Hinojosa-Laborde, C., Chapa, I., Lange, D. & Haywood, J. R. Gender differences in sympathetic nervous system regulation. Clin. Exp. Pharmacol. Physiol. 26, 122–126 (1999).

Johnson, M. S. et al. Sex differences in baroreflex sensitivity, heart rate variability, and end organ damage in the TGR(mRen2)27 rat. Am. J. Physiol. Heart Circ. Physiol. 301, H1540–H1550 (2011).

Denton, K. M., Hilliard, L. M. & Tare, M. Sex-related differences in hypertension: seek and ye shall find. Hypertension 62, 674–677 (2013).

Pal, S. & Radavelli-Bagatini, S. Association of arterial stiffness with obesity in Australian women: a pilot study. J. Clin. Hypertens. (Greenwich) 15, 118–123 (2013).

Berry, K. L. et al. Large-artery stiffness contributes to the greater prevalence of systolic hypertension in elderly women. J. Am. Geriatr. Soc. 52, 368–373 (2004).

Scuteri, A. et al. Associations of large artery structure and function with adiposity: effects of age, gender, and hypertension. The SardiNIA Study. Atherosclerosis 221, 189–197 (2012).

Meyer, M. R., Clegg, D. J., Prossnitz, E. R. & Barton, M. Obesity, insulin resistance and diabetes: sex differences and role of oestrogen receptors. Acta Physiol. (Oxf.) 203, 259–269 (2011).

Ribas, V. et al. Myeloid-specific estrogen receptor alpha deficiency impairs metabolic homeostasis and accelerates atherosclerotic lesion development. Proc. Natl Acad. Sci. USA 108, 16457–16462 (2011)

Maric-Bilkan, C. & Manigrasso, M. B. Sex differences in hypertension: contribution of the renin-angiotensin system. Gend. Med. 9, 287–291 (2012).

Lindsey, S. H., Yamaleyeva, L. M., Brosnihan, K. B., Gallagher, P. E. & Chappell, M. C. Estrogen receptor GPR30 reduces oxidative stress and proteinuria in the salt-sensitive female mRen2.Lewis rat. Hypertension 58, 665–671 (2011).

Ricchiuti, V. et al. Estradiol increases angiotensin II type 1 receptor in hearts of ovariectomized rats. J. Endocrinol. 200, 75–84 (2009).

Lindsey, S. H. & Chappell, M. C. Evidence that the G protein-coupled membrane receptor GPR30 contributes to the cardiovascular actions of estrogen. Gend. Med. 8, 343–354 (2011).

Zhang, R. & Reisin, E. Obesity-hypertension: the effects on cardiovascular and renal systems. Am. J. Hypertens. 13, 1308–1314 (2000).

Smink, P. A. et al. An initial reduction in serum uric acid during angiotensin receptor blocker treatment is associated with cardiovascular protection: a post-hoc analysis of the RENAAL and IDNT trials. J. Hypertens. 30, 1022–1028 (2012).

Gupta, A. K. et al. Baseline predictors of resistant hypertension in the Anglo-Scandinavian Cardiac Outcome Trial (ASCOT): a risk score to identify those at high-risk. J. Hypertens. 29, 2004–2013 (2011).

Mancia, G. et al. 2013 Practice guidelines for the management of arterial hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC): ESH/ESC Task Force for the Management of Arterial Hypertension. J. Hypertens. 31, 1925–1938 (2013).