The partition of unity finite element method: Basic theory and applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
1972
I. Babuška and J.E. Osborn, Private communication.
Bergman, 1961
Freund, 1993, A transpose-free quasi-minimal residual algorithm for non-hermitian linear systems, SIAM J. Sci. Comput., 14, 470, 10.1137/0914029
Gradshtein, 1980
Herrera, 1984
Kress, 1989
Melenk, 1995, On generalized finite element methods
Mergelyan, 1962, Vol. 3 of 1, 294
Muskhelishvili, 1963
Oh, 1992, The p-version of the finite element method for the elliptic boundary value problems with interfaces, Comput. Methods Appl. Mech. Engrg., 97, 211, 10.1016/0045-7825(92)90164-F
Oh, 1995, The method of auxiliary mapping for the finite element solutions of elasticity problems containing singularities, J. Comput. Phys., 121, 193, 10.1016/S0021-9991(95)90017-9
Babuška, 1994, Special finite element methods for a class of second order elliptic problems with rough coefficients, SIAM J. Numer. Anal., 31, 945, 10.1137/0731051
Babuška, 1995, A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution, Comput. Methods Appl. Mech. Engrg., 128, 325, 10.1016/0045-7825(95)00890-X
I. Babuška and J.M. Melenk, The partition of unity method, Int. J. Numer. Methods Engrg., in press.
I. Babuška and Z. Zhang, The partition of unity finite element method for the elastically supported beam, to appear.
Szegö, 1921, Über Polynome, die zu einer gegebenen Kurve der komplexen Ebene gehören, Mathematische Zeitschrift, 9, 218, 10.1007/BF01279030
Thomson, 1995, A Galerkin least squares finite element method for the two-dimensional Helmholtz equation, Int. J. Numer. Methods Engrg., 38, 371, 10.1002/nme.1620380303
Vekua, 1967
Walsh, 1960, Interpolation and Approximation by Rational Functions in the Complex Domain, Vol. 20