The oviposition preference of Leucoptera coffeella is not determined by the cultivar of Coffea arabica, but it may influence some traits of its offspring performance
Tóm tắt
The coffee leaf miner, Leucoptera coffeella (Guérin-Méneville), is one of the main pests of coffee (Coffea spp.) in the Neotropical region. Leucoptera coffeella is considered a specialist insect because it develops exclusively within the leaves of the genus Coffea. In this laboratory study, we investigated the oviposition preference and performance of L. coffeella on the coffee leaf rust (Hemileia vastatrix Berkeley & Broome)-susceptible C. arabica cultivars “Red Catuai”, “Red Caturra”, and “Typica”, and resistant cultivars “Costa Rica 95”, “Oro Azteca”, and “IAPAR 59”. Individual (non-choice) and group (multiple-choice) leaves of these cultivars were exposed to mated individual L. coffeella females and the number of eggs laid per leaf was recorded. Oviposition preference was found to be indistinct among the coffee cultivars evaluated. However, larvae and pupal period, and adult body length were significantly affected by the coffee cultivar. These results are discussed in relation to the preference-performance hypothesis and its impact on L. coffeella’s strategy to choose the host plant.
Tài liệu tham khảo
Avelino J, Anzueto F (2020) Coffee rust epidemics in Central America: chronicle of a resistance breakdown following the great epidemics of 2012 and 2013. In: Ristaino JB, Records A (eds) Emerging plant diseases and global food security. The American Phytopathological Society. St. Paul, Minnesota, pp 185–198. https://doi.org/10.1094/9780890546383.009
Avelino J, Cristancho M, Georgiou S, Imbach P, Aguilar L, Bornemann G, Läderach P, Anzueto F, Hruska AJ, Morales C (2015) The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions. Food Secur 7:303–321. https://doi.org/10.1007/s12571-015-0446-9
Awmack C, Leather S (2002) Host plant quality and fecundity in herbivorous insects. Annu Rev Entomol 47:817–844. https://doi.org/10.1146/annurev.ento.47.091201.145300
Barrera JF (2008) Coffee pests and their management. In: Capinera JL (ed) Encyclopedia of entomology. Springer, Netherlands, Dordrecht, pp 961–998
Barrera JF (2016) Café robusta, ¿héroe o villano? Ecofronteras (Mexico) 20(58):14–17. https://revistas.ecosur.mx/ecofronteras/index.php/eco/article/view/1661
Barrera JF (2017) La roya, implacable enemigo del café. Claridades Agropecuarias (México) 280:22–29. https://info.aserca.gob.mx/claridades/revistas/280/ca280-22.pdf
Bernays EA (2001) Neural limitations in phytophagous insects: implications for diet breadth and evolution of host affiliation. Annu Rev Entomol 46:703–727. https://doi.org/10.1146/annurev.ento.46.1.703
Bradley LE, Kelly CA, Bowers MD (2018) Host plant suitability in a specialist herbivore, Euphydryas anicia (Nymphalidae): Preference, performance and sequestration. J Chem Ecol 44:1051–1057. https://doi.org/10.1007/s10886-018-1012-7
Cardoso DC, Martinati JC, Giachetto PF, Vidal RO, Carazzolle MF, Padilha L, Guerreiro-Filho O, Maluf MP (2014) Large-scale analysis of differential gene expression in coffee genotypes resistant and susceptible to leaf miner-toward the identification of candidate genes for marker assisted-selection. BMC Genomics 15:66. https://doi.org/10.1186/1471-2164-15-66
Carrasco D, Larsson MC, Anderson P (2015) Insect host plant selection in complex environments. Curr Opin Insect Sci 8:1–7. https://doi.org/10.1016/j.cois.2015.01.014
Carrillo J, Danielson-François A, Siemann E, Meffert L (2012) Male-biased sex ratio increases female egg laying and fitness in the housefly. Musca Domestica J Ethol 30:247–254. https://doi.org/10.1007/s10164-011-0317-6
Carvalho CF, Carvalho SM, Souza B (2019) Coffee. In: Souza B, Vázquez LL, Marucci RC (eds) Natural Enemies of Insect Pests in Neotropical Agroecosystems: Biological Control and Functional Biodiversity. Springer International Publishing, Cham, pp 277–291
Clavijo-McCormick A, Gershenzon J, Unsicker S (2014) Little peaks with big effects: establishing the role of minor plant volatiles in plant–insect interactions. Plant Cell Environ 37:1836–1844. https://doi.org/10.1111/pce.12357
David-Rueda G, Constantino CLM, Cecilia Montoya E, Ortega MOE, Nancy Gil Z, Benavides-Machado P (2016) Diagnóstico de Leucoptera coffeella (Lepidoptera: Lyonetiidae) y sus parasitoides en el departamento de Antioquia, Colombia. Rev Colomb Entomol 42:4–11. http://www.scielo.org.co/pdf/rcen/v42n1/v42n1a02.pdf
de la Masselière C, Facon B, Hafsi A, Duyck PF (2017) Diet breadth modulates preference-performance relationships in a phytophagous insect community. Sci Rep. https://doi.org/10.1038/s41598-017-17231-2
de Matos JW, Guerreiro-Filho O, Gonçalves W, Ramiro DA, dos Fatobene BJR (2011) Antixenosis resistance to leaf miner Leucoptera coffeella in Coffea species. Euphytica 181:253–260. https://doi.org/10.1007/s10681-011-0418-x
Eaton KM, Karban R (2014) Effects of trichomes on the behavior and distribution of Platyprepia virginalis caterpillars. Entomol Exp Appl 151:144–151. https://doi.org/10.1111/eea.12178
Egan AL, Hook KA, Reeve HK, Iyengar VK (2016) Polyandrous females provide sons with more competitive sperm: Support for the sexy-sperm hypothesis in the rattlebox moth (Utetheisa ornatrix). Evolution (n y) 70:72–81. https://doi.org/10.1111/evo.12829
Fernández PC, Braccini CL, Dávila C, Barrozo RB, Aráoz MVC, Cerrillo T, Gershenzon J, Reichelt M, Zavala JA (2019) The use of leaf surface contact cues during oviposition explains field preferences in the Willow Sawfly Nematus oligospilus. Sci Rep 9:1–13. https://doi.org/10.1038/s41598-019-41318-7
Frérot B, Leppik E, Groot AT, Unbehend M, Holopainen JK (2017) Chemical signatures in plant–insect interactions. In: Sauvion N, Thiéry D, Calatayud P-A (eds) Insect-plant interactions in a crop protection perspective, vol 81. Academic Press, pp 139–177. https://doi.org/10.1016/bs.abr.2016.10.003
Gaitán A, Cristancho M, Castro-Caicedo B, Rivillas C (2016) Compendium of coffee diseases and pests. The American Phytopathological Society. St. Paul, Minnesota. https://doi.org/10.1094/9780890544723
García-Barrios E (2015) Multivariate indices as estimates of dry body weight for comparative study of body size in Lepidoptera. Nota Lepidopterol 38:59–74. https://doi.org/10.3897/nl.38.8957
Gripenberg S, Mayhew PJ, Parnell M, Roslin T (2010) A meta-analysis of preference–performance relationships in phytophagous insects. Ecol Lett 13:383–393. https://doi.org/10.1111/j.1461-0248.2009.01433.x
Guerreiro-Filho O (2006) Coffee leaf miner resistance. Brazilian J Plant Physiol 18:109–117. https://doi.org/10.1590/S1677-04202006000100009.ISBN:1677-0420
Hafen E (2004) Interplay between growth factor and nutrient signaling: Lessons from Drosophila TOR. In: Thomas G, Sabatini DM, Hall MN (eds) TOR Current Topics in Microbiology and Immunology. Springer, Berlin Heidelberg, pp 153–167
Jaramillo M, Parra J (2017) Aspectos biológicos de Leucoptera coffeella (Guérin-Meneville, 1842) (Lepidoptera: Lyonetiidae) en Coffea arabica en condiciones de laboratorio. Rev Del Cent Nac Investig Café 68:20–27
Jaenike J (1978) On optimal oviposition behavior in phytophagous insects. Theor Popul Biol 14:350–356. https://doi.org/10.1016/0040-5809(78)90012-6
Khan J, Noor M (2010) Outline of biological effects, fecundity, eclosion and lifespan on adult tropical warehouse moth, Cadra cautella (Lepidoptera: Pyralidae) by using sex ratio. Int J Agric Sc Food Technol 2:35–40. https://doi.org/10.17352/2455-815X.000012
Lomelí-Flores J, Barrera J, Bernal J (2010) Impacts of weather, shade cover and elevation on coffee leafminer Leucoptera coffeella (Lepidoptera: Lyonetiidae) population dynamics and natural enemies. Crop Prot 29:1039–1048. https://doi.org/10.1016/j.cropro.2010.03.007
Lomeli-Flores JR, Barrera JF, Bernal JS (2009) Impact of natural enemies on coffee leafminer Leucoptera coffeella (Lepidoptera: Lyonetiidae) population dynamics in Chiapas. Mexico Biol Control 51:51–60. https://doi.org/10.1016/j.biocontrol.2009.03.021
Lund M, Brainard DC, Szendrei Z (2019) Cue hierarchy for host plant selection in Pieris rapae. Entomol Exp Appl 167:330–340. https://doi.org/10.1111/eea.12772
Magalhães S, Fernandes F, Demuner A, Picanço M, Guedes R (2010) Leaf alkaloids, phenolics, and coffee resistance to the leaf miner Leucoptera coffeella (Lepidoptera: Lyonetiidae). J Econ Entomol 103:1438–1443. https://doi.org/10.1603/EC09362.ISBN:0022-0493
Magalhães S, Guedes R, Demuner A, Lima E (2008a) Effect of coffee alkaloids and phenolics on egg-laying by the coffee leaf miner Leucoptera coffeella. Bull Entomol Res 98:483–489. https://doi.org/10.1017/S0007485308005804.ISBN:0007-4853
Magalhães S, Guedes R, Lima E, Demuner A (2008b) Coffee leaf volatiles and egg laying by the coffee leaf miner Leucoptera coffeella. Crop Prot 27:1038–1041. https://doi.org/10.1016/j.cropro.2007.12.005
Mayhew PJ (1997) Adaptive patterns of host-plant selection by phytophagous insects. Oikos 79:417–428. https://doi.org/10.2307/3546884
Meiners T, Obermaier E (2004) Hide and seek on two spatial scales – vegetation structure effects herbivore oviposition and egg parasitism. Basic Appl Ecol 5:87–94. https://doi.org/10.1078/1439-1791-00182
Melo GA, Shimizu MM, Mazzafera P (2006) Polyphenoloxidase activity in coffee leaves and its role in resistance against the coffee leaf miner and coffee leaf rust. Phytochemistry 67:277–285. https://doi.org/10.1016/j.phytochem.2005.11.003
Meriño-Cabrera Y, Zanuncio JC, da Silva RS, Solis-Vargas M, Cordeiro G, Rainha FR, Campos WG, Picanço MC, de Almeida Oliveira MG (2018) Biochemical response between insects and plants: an investigation of enzyme activity in the digestive system of Leucoptera coffeella (Lepidoptera: Lyonetiidae) and leaves of Coffea arabica (Rubiaceae) after herbivory. Ann Appl Biol 172:236–243. https://doi.org/10.1111/aab.12416
Michereff MFF, Vilela EF, Filho MM, Nery DMS, Thièbaut JT (2004) Effects of delayed mating and male mating history on the reproductive potential of Leucoptera coffeella (Lepidoptera: Lyonetiidae). Agric for Entomol 6:241–247. https://doi.org/10.1111/j.1461-9555.2004.00227.x
Milonas PG, Partsinevelos GK, Andow DA (2017) Effect of male mating history and age on remating by female European corn borer. PLoS ONE. https://doi.org/10.1371/journal.pone.0175512
Motta I, Dantas J, Vidal L, Bilio J, Pujol-Luz J, Albuquerque E (2020) From basic to applied knowledge: Larval development and sex morphology to control Leucoptera coffeella (Lepidoptera: Lyonetiidae). Preprints. https://doi.org/10.20944/preprints202012.0083.v1
Nijhout HF, Riddiford LM, Mirth C, Shingleton AW, Suzuki Y, Callier V (2014) The developmental control of size in insects. Wires Dev Biol 3:113–134. https://doi.org/10.1002/wdev.124
Notley F (1956) The Leucoptera leaf miners of coffee on Kilimanjaro. II.—Leucoptera caffeina Wshbn. Bull Entomol Res 46:899–912. https://doi.org/10.1017/S0007485300037123
Pereira EJG, Picanço MC, Bacci L, Della LTMC, Silva ÉM, Fernandes FL (2007) Natural mortality factors of Leucoptera coffeella (Lepidoptera: Lyonetiidae) on Coffea arabica. Biocontrol Sci Technol 17:441–455. https://doi.org/10.1080/09583150701309337
Prudic KL, Oliver JC, Bowers MD (2005) Soil nutrient effects on oviposition preference, larval performance, and chemical defense of a specialist insect herbivore. Oecologia 143:578–587. https://doi.org/10.1007/s00442-005-0008-5
R Core Team. 2014. R: A Language and Environment for Statistical Computing. :http://www.r-project.org.
Ramiro D, Guerreiro O, Queiroz R, Matthiesen S (2004) Caracterização anatômica de folhas de cafeeiros resistentes e suscetíveis ao bicho-mineiro. Bragantia 63:363–372. https://doi.org/10.1590/S0006-87052004000300006
Ramiro DA, Guerreiro-filho O, Mazzafera P (2006) Phenol contents, oxidase activities, and the resistance of coffee to the leaf miner Leucoptera coffeella. J Chem Ecol. https://doi.org/10.1007/s10886-006-9122-z
Reis R, Lima E, Vilela E, Barros R (2000) Method for maintenance of coffee leaves in vitro for mass rearing of Leucoptera coffeellum (Guérin-Ménèville) (Lepidoptera: Lyonetiidae). An Soc Entomol Bras 29:849–854. https://doi.org/10.1590/S0301-80592000000400030
Reudler-Talsma JH, Biere A, Harvey JA, van Nouhuys S (2008) Oviposition cues for a specialist butterfly-plant chemistry and size. J Chem Ecol 34:1202–1212. https://doi.org/10.1007/s10886-008-9519-y
Righi CA, Campoe OC, Bernardes MS, Lunz AMP, Piedade SMS, Pereira CR (2013) Influence of rubber trees on leaf-miner damage to coffee plants in an agroforestry system. Agrofor Syst 87:1351–1362. https://doi.org/10.1007/s10457-013-9642-9
Rios R, Salgado-Luarte C, Stotz G, Gianoli E (2016) Co-ocurrence of host plants associated with plant quality determines performance patterns of the specialist butterfly, Battus polydamas archidamas (Lepidoptera: Papilionidae: Troidini). Eur J Entomolgy 113:150–157. https://doi.org/10.14411/eje.2016.019
Rojas JC, Virgen A, Cruz-López L (2003) Chemical and tactile cues influencing oviposition of a generalist moth, Spodoptera frugiperda (Lepidoptera: Noctuidae). Environ Entomol 32:1386–1392. https://doi.org/10.1603/0046-225X-32.6.1386
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682
Silberbush A, Blaustein L (2011) Mosquito females quantify risk of predation to their progeny when selecting an oviposition site. Funct Ecol 25:1091–1095. https://doi.org/10.1111/j.1365-2435.2011.01873.x
Singh A, Singh S, Singh I (2016) Recent insights into the molecular mechanism of jasmonate signaling during insect-plant interaction. Australas Plant Pathol 45:123–133. https://doi.org/10.1007/s13313-015-0392-1
Talhinhas P, Batista D, Diniz I, Vieira A, Silva DN, Loureiro A, Tavares S, Pereira AP, Azinheira HG, Guerra-Guimarães L, Várzea V, Silva M do C (2017) The coffee leaf rust pathogen Hemileia vastatrix: one and a half centuries around the tropics. Mol Plant Pathol 18(8):1039–1051. https://doi.org/10.1111/mpp.12512
Thompson JN (1988) Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects. Entomol Exp Appl 47:3–14. https://doi.org/10.1111/j.1570-7458.1988.tb02275.x
Waller J, Bigger M, Hillocks R (2007) Coffee pests, diseases and their management. CAB International, Oxfordshire
War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7:1306–1320. https://doi.org/10.4161/psb.21663
Zambolim L (2016) Current status and management of coffee leaf rust in Brazil. Trop Plant Pathol 41:1–8. https://doi.org/10.1007/s40858-016-0065-9
Zhang L, Zhang F, Melotto M, Yao J, He SY (2017) Jasmonate signaling and manipulation by pathogens and insects. J Exp Bot 68:1371–1385. https://doi.org/10.1093/jxb/erw478