The overlap of accessory virulence factors and multidrug resistance among clinical and surveillance Klebsiella pneumoniae isolates from a neonatal intensive care unit in Nepal: a single-centre experience in a resource-limited setting
Tóm tắt
Từ khóa
Tài liệu tham khảo
Wyres KL, Lam MMC, Holt KE. Population genomics of Klebsiella pneumoniae. Nat Rev Microbiol. 2020;18(6):344–59. https://doi.org/10.1038/s41579-019-0315-1.
Wyres KL, Nguyen TNT, Lam MMC, et al. Genomic surveillance for hypervirulence and multi-drug resistance in invasive Klebsiella pneumoniae from South and Southeast Asia. Genome Med. 2020;12(1):11. https://doi.org/10.1186/s13073-019-0706-y.
Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Thirty-second Informational Supplement M100-S30. CLSI, Wayne, PA, USA, 2022.
Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–81. https://doi.org/10.1111/j.1469-0691.2011.03570.x.
Dallenne C, Da Costa A, Decré D, et al. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J Antimicrob Chemother. 2010;65(3):490–5. https://doi.org/10.1093/jac/dkp498.
Lewis JS, 2nd, Herrera M, Wickes B, et al. First report of the emergence of CTX-M-type extended-spectrum beta-lactamases (ESBLs) as the predominant ESBL isolated in a U.S. health care system. Antimicrob Agents Chemother. 2007;51(11):4015-21. https://doi.org/10.1128/aac.00576-07.
Pérez-Pérez FJ, Hanson ND. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol. 2002;40(6):2153–62. https://doi.org/10.1128/jcm.40.6.2153-2162.2002.
Poirel L, Walsh TR, Cuvillier V, et al. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70(1):119–23. https://doi.org/10.1016/j.diagmicrobio.2010.12.002.
Compain F, Babosan A, Brisse S, et al. Multiplex PCR for detection of seven virulence factors and K1/K2 capsular serotypes of Klebsiella pneumoniae. J Clin Microbiol. 2014;52(12):4377–80. https://doi.org/10.1128/jcm.02316-14.
Li Y, Dong L, Gao W, et al. Hypervirulent Klebsiella pneumoniae infections in pediatric populations in Beijing (2017–2019): clinical characteristics, molecular epidemiology and antimicrobial susceptibility. Pediatr Infect Dis J. 2021;40(12):1059–63. https://doi.org/10.1097/inf.0000000000003253.
Versalovic J, Koeuth T, Lupski JR. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 1991;19(24):6823–31. https://doi.org/10.1093/nar/19.24.6823.
Heras J, Domínguez C, Mata E, et al. GelJ—a tool for analyzing DNA fingerprint gel images. BMC Bioinform. 2015;16:270. https://doi.org/10.1186/s12859-015-0703-0.
Gorrie CL, Mirčeta M, Wick RR, et al. Genomic dissection of Klebsiella pneumoniae infections in hospital patients reveals insights into an opportunistic pathogen. Nat Commun. 2022;13(1):3017. https://doi.org/10.1038/s41467-022-30717-6.
Lapp Z, Han JH, Wiens J, et al. Patient and microbial genomic factors associated with carbapenem-resistant Klebsiella pneumoniae extraintestinal colonization and infection. mSystems. 2021. https://doi.org/10.1128/mSystems.00177-21.