Sự biểu hiện quá mức của các gen chuyển hóa thiol góp phần vào kháng thuốc trong các mẫu phân lập lâm sàng của bệnh lý leishmaniasis visceral (kala azar) ở Ấn Độ

Parasites and Vectors - Tập 7 - Trang 1-11 - 2014
Neeloo Singh1, Mitali Chatterjee2, Shyam Sundar3
1Central Drug Research Institute, Jankipuram Extension, Lucknow, India
2Department of Pharmacology, Institute of Post Graduate Medical Education and Research, Kolkata, India
3Banaras Hindu University, Varanasi, India

Tóm tắt

Bệnh leishmaniasis nội tạng (VL), còn gọi là Kala Azar (KA) hoặc sốt đen ở Ấn Độ, làm khoảng 20.000 người tử vong mỗi năm. Hóa trị liệu vẫn là một trong những công cụ quan trọng nhất trong việc kiểm soát VL. Hóa trị liệu hiện tại cho Kala Azar ở Ấn Độ phụ thuộc vào một lượng hạn chế các loại thuốc bao gồm natri antimonat gluconat và amphotericin B, bên cạnh loại thuốc rất đắt tiền miltefosine. Các antimonat pentavalent đã được sử dụng trong hơn nửa thế kỷ trong liệu pháp điều trị leishmaniasis vì chúng tương đối an toàn và rẻ tiền, tuy nhiên, sự lan rộng của kháng thuốc đối với loại thuốc này đang buộc các bác sĩ lâm sàng ở Ấn Độ phải từ bỏ phương pháp điều trị này. Do đó, việc cải thiện hóa trị liệu kháng antimon đã trở thành một lĩnh vực nghiên cứu đầy thách thức đối với các nhà nghiên cứu leishmaniasis trên toàn thế giới. Sự xuất hiện đáng lo ngại của kháng thuốc đối với thuốc kháng leishmanial thường sử dụng, natri antimonat gluconat, ở Ấn Độ, đã dẫn chúng tôi đến việc làm sáng tỏ các cơ chế kháng thuốc trong các mẫu phân lập lâm sàng. Các nghiên cứu trên các dòng đột biến trong phòng thí nghiệm cho thấy kháng thuốc đối với các antimonat phụ thuộc nhiều vào nồng độ thiol. Kí sinh trùng né tránh các tác động độc hại của liệu pháp antimon bằng cách tăng cường xả thuốc ra ngoài tế bào khi liên hợp với thiol thông qua việc biểu hiện quá mức các protein màng thuộc siêu họ của các vận chuyển ABC. Chúng tôi đã tiến hành các nghiên cứu chức năng để xác định hoạt động của các bơm xả trong các mẫu phân lập lâm sàng kháng antimon được thu thập từ các khu vực có dịch bệnh ở Ấn Độ, đồng thời thực hiện đặc trưng phân tử của nồng độ thiol trong những kí sinh trùng này. Sự biểu hiện quá mức của gen mã hóa cho γ glutamylcysteine synthetase đã được quan sát ở những mẫu phân lập lâm sàng kháng thuốc này, từ đó xác nhận rằng thiol là những yếu tố chính quyết định sự kháng thuốc antimon. Các hợp chất SbIII/thiol có thể được lưu giữ bởi protein kháng thuốc đa bề mặt hàng A (MRPA) vào các bào quan nội bào hoặc có thể được bơm trực tiếp ra ngoài bởi một vận chuyển chưa được đặc trưng. Các nghiên cứu của chúng tôi về kháng thuốc antimon ở các mẫu phân lập lâm sàng khác nhau của L. donovani gợi ý rằng sự hoạt động quá mức của MRP đóng một vai trò trong việc tạo ra kiểu hình kháng antimon ở một số mẫu phân lập lâm sàng L. donovani.

Từ khóa

#leishmaniasis nội tạng #kháng thuốc #thiol #antimonat #Ấn Độ

Tài liệu tham khảo

Sharma U, Redhu NS, Mathur P, Sarman S: Re-emergence of visceral leishmaniasis in Gujarat, India. J Vector Borne Dis. 2007, 44: 230-232. Mehta V, Balachandran C, Rao R, Dil SK, Indusri L: Diffuse Cutaneous Leishmaniasis in HIV.Dermatol Online J 2009, 15(4):9., Sharma NL, Mahajan VK, Kanga A, Sood A, Katoch VM, Mauricio I, Singh CD, Parwan UC, Sharma VK, Sharma RC: Localized cutaneous leishmaniasis due to Leishmania donovani and Leishmania tropica: preliminary findings of the study of 161 new cases from a new endemic focus in Himachal Pradesh, India. Am J Trop Med Hyg. 2005, 72 (6): 819-824. Desjeux P, Ghosh R, Dhalaria P, Strub-Wourgaft N, Zijlstra E: Report of the Post Kala-Azar Dermal Leishmaniasis (PKDL) consortium meeting, New Delhi, India, 27–29 June 2012.Parasit Vectors 2013, 6:196., Brochu C, Wang J, Roy G, Messier N, Wang XY, Saravia NG, Ouellette M: Antimony uptake systems in the protozoan parasite Leishmania and accumulation differences in antimony-resistant parasites. Antimicrob Agents Chemother. 2003, 47: 3073-3079. 10.1128/AAC.47.10.3073-3079.2003. Gourbal B, Sonuc N, Bhattacharjee H, Legare D, Sundar S, Ouellette M, Rosen BP, Mukhopadhyay R: Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin. J Biol Chem. 2004, 279: 31010-31017. 10.1074/jbc.M403959200. Denton H, Mc Gregor JC, Coombs GH: Reduction of antileishmanial pentavalent antimonial drugs by a parasite-specific thiol–dependent reductase, TDR1. Biochem J. 2004, 381: 405-412. 10.1042/BJ20040283. Zhou Y, Messier N, Quellette M, Rosen BP, Mukhopadhyay R: Leishmania major LmACR2 is a pentavalent antimony reductase that confers sensitivity to the drug Pentostam. J Biol Chem. 2004, 279: 37445-37451. 10.1074/jbc.M404383200. Santos Ferreira C, Martins PS, Demicheli C, Brochu C, Ouellette M, Frezard F: Thiol-induced reduction of antimony (V) into antimony (III): a comparative study with trypanothione, cysteinyl-glycine, cysteine and glutathione. Biometals. 2003, 16: 441-446. 10.1023/A:1022823605068. Wyllie S, Cunningham ML, Fairlamb AH: Dual action of antimonial drugs on thiol redox metabolism in the human pathogen Leishmania donovani. J Biol Chem. 2004, 279: 39925-39932. 10.1074/jbc.M405635200. Legare D, Richard D, Mukhopadhyay R, Stierhof YD, Rosen BP, Haimeur A, Papadopoulou B, Ouellette M: The Leishmania ATP-binding cassette protein PGPA is an intracellular metalthiol transporter ATPase. J Biol Chem. 2001, 276: 26301-26307. 10.1074/jbc.M102351200. Dey S, Ouellette M, Lightbody J, Papadopoulou B, Rosen BP: An ATPdependent As(III)-glutathione transport system in membrane vesicles of Leishmania tarentolae. Proc Natl Acad Sci U S A. 1996, 93: 2192-2197. 10.1073/pnas.93.5.2192. Singh N: Drug resistance mechanisms in clinical isolates of Leishmania donovani. Indian J Med Res. 2006, 123: 411-422. Mukhopadhyay R, Mukherjee S, Mukherjee B, Naskar K, Mandal D, Decuypere S, Ostyn B, Prajapati VK, Sundar S, Dujardin JC, Roy S: Characterisation of Leishmania donovani isolates: biochemical and biophysical studies and interaction with host cells. Int J Parasitol. 2011, 41 (13–14): 1311-1321. 10.1016/j.ijpara.2011.07.013. Andrade JM, Murta SM: Functional analysis of cytosolic tryparedoxin peroxidase in antimony resistant and susceptible Leishmania braziliensis and Leishmania infantum lines.Parasit Vectors 2014, 7:406., Wyllie S, Mandal G, Singh N, Sundar S, Fairlamb AH, Chatterjee M: Elevated levels of tryparedoxin peroxidase in antimony unresponsive Leishmania donovani field isolates. Mol Biochem Parasitol. 2010, 173: 162-164. 10.1016/j.molbiopara.2010.05.015. Decuypere S, Vanaerschot M, Brunker K, Imamura H, Mu¨ ller S, Khanal B, Rijal S, Dujardin J-C, Coombs GH: Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background.PLoS Negl Trop Dis 2012, 6(2):e1514. doi:10.1371/journal.pntd.0001514., Rijal S, Ostyn B, Uranw S, Rai K, Bhattarai NR, Dorlo TP, Beijnen JH, Vanaerschot M, Decuypere S, Dhakal SS, Das ML, Karki P, Singh R, Boelaert M, Dujardin JC: Increasing failure of Miltefosine in the treatment of Kala-azar in Nepal and the potential role of parasite drug resistance, reinfection, or noncompliance. Clin Infect Dis. 2013, 56 (11): 1530-1538. 10.1093/cid/cit102. Chulay JD, Bryceson ADM: Quantitation of amastigotes of Leishmania donovani in smears of splenic aspirates from patients with visceral leishmaniasis. Am J Trop Med Hyg. 1983, 32: 475-479. Singh N: Is there true Sb (V) resistance in Indian kala-azar field isolates?. Curr Sci. 2002, 83: 101-102. Singh N, Singh RT, Sundar S: Novel mechanisms of drug resistance in kala azar field isolates. J Infect Dis. 2003, 188: 600-607. 10.1086/377133. Dube A, Singh N, Sundar S, Singh N: Refractoriness to the treatment of sodium stibogluconate in Indian kala-azar field isolates persists in in vitro and in vivo experimental models. Parasitol Res. 2005, 96: 216-223. 10.1007/s00436-005-1339-1. Maniatis T, Fritsch EF, Sambrook J: Molecular Cloning: A Laboratory Manual. 1982, Cold Spring Harbor Press, Cold Spring Harbor, NY Chomezynski P, Sacchi N: Single step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987, 162: 156-159. Decuypere S, Rijal S, Yardley V, De Doncker S, Laurent T, Khanal B, Chappuis F, Dujardin JC: Gene expression analysis of the mechanism of natural Sb(V) resistance in Leishmania donovani isolates from Nepal. Antimicrob Agents Chemother. 2005, 49: 4616-4621. 10.1128/AAC.49.11.4616-4621.2005. Singh N, Almeida R, Kothari H, Kumar P, Mandal G, Chatterjee M, Venkatachalam S, Govind MK, Mandal SK, Sundar S: Differential gene expression analysis in antimony unresponsive Indian kala azar (visceral leishmaniasis) clinical isolates by DNA microarray. Parasitology. 2006, 134: 1-11. Waki K, Dutta S, Ray D, Kolli BK, Akman L, Kawazu SI, Lin CP, Chang KP: Transmembrane molecules for phylogenetic analyses of pathogenic protists: Leishmania-specific informative sites in hydrophilic loops of trans-endoplasmic reticulum N-Acetylglucosamine-1-Phosphate transferase. Eukaryot Cell. 2007, 6 (2): 198-210. 10.1128/EC.00282-06. Thakur CP, Dedet JP, Narain S, Pratlong F:Leishmania species, drug unresponsiveness and visceral leishmaniasis in Bihar, India. Trans R Soc Trop Med Hyg. 2001, 95 (2): 187-189. 10.1016/S0035-9203(01)90160-9. Ephros M, Bitnun A, Shaked P, Waldman E, Zilberstein D: Stage specific activity of pentavalent antimony against Leishmania donovani axenic amastigotes. Antimicrob Agents Chemother. 1999, 43: 278-282. Olson DP, Taylor BJ, Ivy SP: Detection of MRP functional activity: Calcein AM but not BCECF AM as a Multidrug Resistance-Related Protein (MRP1) substrate. Cytometry. 2001, 46: 105-113. 10.1002/cyto.1072. Essodaigui M, Frezard F, Moreira ESA, Dagger F, Garnier-Suillerot A: Energy dependent efflux from Leishmania promastigotes of substrates of the mammalian multidrug resistance pumps. Mol Biochem Parasitol. 1999, 100: 73-84. 10.1016/S0166-6851(99)00036-5. Dodge MA, Waller RF, Chow LMC, Zaman MM, Cotton LM, McConville MJ, Wirth DF: Localization and activity of multidrug resistance protein 1 in the secretory pathway of Leishmania Parasites. Mol Microbiol. 2004, 51 (6): 1563-1575. 10.1111/j.1365-2958.2003.03927.x. Chowdhury S, Mukhopadhyay R, Saha S, Mishra A, Sengupta S, Roy S, Majumder HK: Flavone resistant Leishmania donovani over expresses LdMRP2 transporter in the parasite and activates host MRP2 on macrophages to circumvent the flavone-mediated cell death. J Biol Chem. 2014, 289: 16129-16147. 10.1074/jbc.M113.539742. Tsimberidou AM, Paterakis G, Androutsos G, Anagnostopoulos N, Galanopoulos A, Kalmantis T, Meletis J, Rombos Y, Sagriotis A, Symeonidis A, Tiniakou M, Zoumbos N, Yataganas X: Evaluation of the clinical relevance of the expression and function of Pglycoprotein, multidrug resistance protein and lung resistance protein in patients with primary acute myelogenous leukaemia. Leuk Res. 2002, 26: 143-154. 10.1016/S0145-2126(01)00106-0. Perez-Victoria FJ, Castanys S, Gamarro F:Leishmania donovani resistance to miltefosine involves a defective inward translocation of the drug. Antimicrob Agents Chemother. 2003, 47: 2397-2403. 10.1128/AAC.47.8.2397-2403.2003. Leprohon P, Légaré D, Ouellette M: Intracellular Localization of the ABCC Proteins of Leishmania and Their Role in Resistance to Antimonials. Antimicrob Agents Chemother 2009, 53(6):2646., Légaré D, Richard D, Mukhopadhyay R, Stierhof Y-D, Rosen Anass Haimeur BP, Papadopoulou B, Ouellette M: The Leishmania ATP-binding Cassette Protein PGPA Is an Intracellular Metal-Thiol Transporter ATPase. J Biol Chem. 2001, 276: 26301-26307. 10.1074/jbc.M102351200. Fairlamb AH, Cerami A: Metabolism and functions of trypanothione in the Kinetoplastid. Annu Rev Microbiol. 1992, 46: 695-729. 10.1146/annurev.mi.46.100192.003403. Kothari H, Kumar P, Sundar S, Singh N: Possibility of membrane modification as a mechanism of antimony resistance in Leishmania donovani. Parasitol Int. 2007, 56: 77-80. 10.1016/j.parint.2006.10.005. Shaked-Mishan P, Ulrich N, Ephros M, Zilberstein D: Novel intracellular SbV reducing activity correlates with antimony susceptibility in Leishmania donovani. J Biol Chem. 2001, 276: 3971-3976. 10.1074/jbc.M005423200. Mandal G, Wyllie S, Singh N, Sundar S, Fairlamb AH, Chatterjee M: Increased levels of thiols protects antimony unresponsive Leishmania donovani field isolates against reactive oxygen species generated by trivalent antimony. Parasitology. 2007, 134: 1679-1687. 10.1017/S0031182007003150. Sarkar A, Mandal G, Singh N, Sundar S, Chatterjee M: Flow cytometric determination of intracellular non-protein thiols in Leishmania promastigotes using 5-chloromethyl fluorescein diacetate. Exp Parasitol. 2009, 122: 299-305. 10.1016/j.exppara.2009.04.012. Singh R, Kumar D, Ramesh V, Negi NS, Singh S, Salotra P: Visceral Leishmaniasis, or Kala Azar (KA): High Incidence of refractoriness to antimony is contributed by anthroponotic transmission via post-KA dermal Leishmaniasis. J Infect Dis. 2006, 194: 302-306. 10.1086/505079. Carter KC, Sundar S, Spickett C, Pereira OC, Mullen AB: The in vivo susceptibility of Leishmania donovani to sodium stibogluconate is drug specific and can be reversed by inhibiting glutathione biosynthesis. Antimicrob Agents Chemother. 2003, 47: 1529-1535. 10.1128/AAC.47.5.1529-1535.2003.