The oscar, Astronotus ocellatus, detects and discriminates dipole stimuli with the lateral line system

Zeitschrift für vergleichende Physiologie - Tập 197 - Trang 959-968 - 2011
Joachim Mogdans1, Ines E. Nauroth1,2
1Institute for Zoology, University of Bonn, Bonn, Germany
2Institute of Cellular Neurosciences, Medical School, University of Bonn, Bonn, Germany

Tóm tắt

We studied the role of the lateral line system for detection and discrimination of dipole stimuli in the oscar, Astronotus ocellatus (Family Cichlidae), and determined detection thresholds in still water and frequency discrimination capabilities in still and turbulent water. Average detection threshold of six animals for a 100-Hz dipole stimulus was 0.0059 μm peak-to-peak water displacement at the surface of the fish. After inactivation of the neuromast receptor organs of the lateral line system with the antibiotic streptomycin, dipole detection was reduced, but recovered within 2–4 weeks. This suggests that the oscar relied strongly on hydrodynamic information received by the lateral line system. Five oscars learned to discriminate a 100-Hz stimulus from 70 Hz and lower frequencies. When turbulence was introduced into the experimental tank, fish were still able to discriminate 100 Hz from frequencies 70 Hz and lower indicating that frequency discrimination mediated by the lateral line system was not reduced in turbulent water.

Tài liệu tham khảo

Abdel-Latif H, Hassan ES, Campenhausen Cv (1990) Sensory performance of blind Mexican cave fish after destruction of the canal neuromasts. Naturwissenschaften 77:237–239 Bassettt DK, Carton AG, Momtgomery JC (2006) Flowing water decreases hydrodynamic signal detection in a fish with an epidermal lateral line system. Mar Fresh Res 57:611–617 Blaxter JHS, Fuiman LA (1989) Function of the free neuromasts of marine teleost larvae. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer-Verlag, New York, pp 481–499 Bleckmann H (1980) Reaction time and stimulus frequency in prey localization in the surface feeding fish Aplocheilus lineatus. J Comp Physiol A 140:163–172 Bleckmann H (1994) Reception of hydrodynamic stimuli in aquatic and semiaquatic animals. In: Rathmayer W (ed) Progess in Zoology, vol 41. Gustav Fischer, Stuttgart, pp 1–115 Bleckmann H, Topp G (1981) Surface wave sensitivity of the lateral line organs of the topminnow Aplocheilus lineatus. Naturwi 67:624–625 Bleckmann H, Waldner I, Schwartz E (1981) Frequency discrimination of the surface-feeding fish Aplocheilus lineatus––a prerequisite for prey localization? J Comp Physiol A 143:485–490 Bleckmann H, Tittel G, Blübaum-Gronau E (1989) The lateral line system of surface feeding fish: Anatomy, physiology and behaviour. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer-Verlag, New York, pp 501–526 Braun C, Coombs S (2010) Vibratory sources as compound stimuli for the octavolateralis systems: dissection of specific stimulation channels using multiple behavioral approaches. J Exp Psychol Anim Behav Proc 36:243–257 Burt de Perera T (2004a) Spatial parameters encoded in the spatial map of the blind Mexican cave fish, Astyanax fasciatus. Anim Behav 68:291–295 Burt de Perera T (2004b) Fish can encode order in their spatial map. Proc Royal Soc Lond, Series B 271:2131–2134 Coombs S (1994) Nearfield detection of dipole sources by the goldfish (Carassius auratus) and the mottled sculpin (Cottus bairdi). J Exp Biol 190:109–129 Coombs S, Conley RA (1997) Dipole source localization by the mottled sculpin II. The role of lateral line excitation patterns. J Comp Physiol A 180:401–415 Coombs S, Janssen J (1989) Peripheral processing by the lateral line system of the mottled sculpin (Cottus bairdi). In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 299–319 Coombs S, Janssen J (1990) Behavioral and neurophysiological assessment of lateral line sensitivity in the mottled sculpin, Cottus bairdi. J Comp Physiol A 167:557–567 Coombs S, Montgomery JC (1999) The enigmatic lateral line system. In: Fay RR, Popper AN (eds) Comparative hearing: fish and amphibians. Springer-Verlag, New York, pp 319–362 Coombs S, Patton P (2009) Lateral line stimulation patterns and prey orienting behavior in the Lake Michigan mottled sculpin (Cottus bairdi). J Comp Physiol A 195:279–297 Coombs S, Braun CB, Donovan B (2001) The orienting response of Lake Michigan mottled sculpin is mediated by canal neuromasts. J Exp Biol 204:337–348 Dailey DD, Braun CB (2009) The detection of pressure fluctuations, sonic audition, is the dominant mode of dipole-source detection in goldfish (Carassius auratus). J Exp Psychol Anim Behav Proc 35:212–223 Denton EJ, Gray JAP (1989) Some observations on the forces acting on neuromasts in fish lateral line canals. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 229–246 Elepfandt A, Seiler B, Aichler B (1985) Water wave frequency discrimination in the clawed frog, Xenopus laevis. J Comp Physiol A 157:255–261 Fay RR (1984) The goldfish ear codes the axis of acoustic particle motion in three dimensions. Science 225:951–954 Fay RR, Edds-Walton PL (1997) Directional response properties of saccula afferents of the toadfish, Opsanus tau. Hear Res 111:1–21 Fay RR, Edds-Walton PL, Highstein SM (1994) Directional sensitivity of saccular afferents of the toadfish to linear acceleration at audio frequencies. Biol Bull 187:258–259 Frühbeis B (1984) Verhaltensphysiologische Untersuchungen zur Frequenzunterscheidung und Empfindlichkeit durch das Seitenlinienorgan des blinden Höhlenfisches Anoptichthys jordani. Dissertation, Universität Mainz Harris GG, van Bergeijk WA (1962) Evidence that lateral line organ responds to near field displacements of sound sources in water. J Acoust Soc Am 34:1831–1841 Harris JA, Cheng AG, Cunningham LL, MacDonals G, Raible DW, Rubel EW (2003) Neomycin-induced hair cell death and rapid regeneration in the lateral line of zebrafish (Danio rerio). JARO 4:219–234 Hassan ES (1989) Hydrodynamic imaging of the surroundings by the lateral line of the blind cave fish Anoptichthys jordani. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 217–228 Hoekstra D, Janssen J (1985) Non-visual feeding behavior of the mottled sculpin, Cottus bairdi, in Lake Michigan. Environ Biol Fish 12:111–117 Janssen J (2004) Lateral line sensory ecology. In: von der Emde G, Mogdans J, Kapoor BG (eds) The senses of fish. Adaptations for the reception of natural stimuli. Narosa, New Delhi, pp 231–264 Janssen J, Corcoran J (1993) Lateral line stimuli can override vision to determine sun fish strike trajectory. J Exp Biol 176:299–305 Jones TA, Nelson RC (1992) Recovery of vestibular function following hair cell destruction by streptomycin. Hear Res 62:181–186 Kalmijn AJ (1989) Functional evolution of lateral line and inner ear sensory systems. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer-Verlag, New York, pp 187–216 Kanter MJ, Coombs S (2003) Rheotaxis and prey detection in uniform currents by Lake Michigan mottled sculpin (Cottus bairdi). J Exp Biol 206:59–70 Kaus S (1987) The effect of aminoglycoside antibiotics on the lateral line organ of Aplocheilus lineatus (Cyprinodontidae). Acta Otolaryngol 103:291–298 Kenyon TN, Ladich F, Yan HY (1998) A comparative study of hearing ability in fishes: the auditory brainstem response. J Comp Physiol A 182:307–318 Kullander SO (1986) Cichlid fishes of the Amazon River drainage of Peru. Swedish Museum of Natural History, Stockholm, 431 p Lu Z, Popper AN, Fay RR (1996) Behavioral detection of acoustic particle motion by a teleost fish (Astronotus ocellatus): sensitivity and directionality. J Comp Physiol A 179:227–233 Matssura S, Ikeda K, Furukawa Z (1971) Effects of streptomycin, kanamycin, quinine, and other drugs on the microphonic potentials of goldfish sacculus. Jap J Physiol 21:579–590 Montgomery JC, Baker CF, Carton AG (1997) The lateral line can mediate rheotaxis in fish. Nature 389:960–963 Münz H (1989) Functional organization of the lateral line periphery. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer-Verlag, New York, pp 285–298 Nauroth IE, Mogdans J (2009) Goldfish and oscars have comparable responsiveness to dipole stimuli. Naturwi 96:1432–1904 Northcutt RG (1989) The phylogenetic distribution and innervation of caniate mechanoreceptive lateral lines. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer-Verlag, New York, pp 17–78 Page LM, Burr BM (1991) A field guide to freshwater fishes of North America north of Mexico. Houghton Mifflin Company, Boston Pohlmann K, Atema J, Breithaupt T (2004) The importance of the lateral line in nocturnal predation of piscivorous catfish. J Exp Biol 207:2971–2978 Popper AN, Fay RR (1999) the auditory periphery in fishes. In: Fay RR, Popper AN (eds) Comparative hearing: fish and amphibians. Handbook of Auditory Research. Springer-Verlag, New York, pp 43–100 Sand O (1981) The lateral line and sound reception. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and sound communication in fishes. Springer-Verlag, New York, pp 459–480 Song J, Yan HY, Popper AN (1995) Damage and recovery of hair cells in fish canal (but not superficial) neuromasts after gentamicin exposure. Hear Res 91:63–71 Teyke T (1985) Collision with and avoidance of obstacles by blind cave fish Anoptichthys jordani (Characidae). J Comp Physiol A 157:837–843 Vogel D, Bleckmann H (1997) Surface wave discrimination in the topminnow Aplocheilus lineatus. J Comp Physiol A 180:671–681 Vogel D, Bleckmann H (2001) Behavioral discrimination of water motions caused by moving objects. J Comp Physiol A 186:1107–1117 Webb JF (1989) Developmental constraints and evolution of the lateral line system in teleost fishes. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer-Verlag, New York, pp 79–98 Webb JF, Montgomery JC, Mogdans J (2008) Bioacoustics and the lateral line system of fishes. In: Webb JF, Popper AN, Fay RR (eds) Fish bioacoustics. Springer handbook of auditory research. Springer, New York, pp 145–182 Weisleder P, Rubel EW (1993) Hair cell regeneration after streptomycin toxicity in the avian vestibular epithelium. J Comp Neurol 331:97–110 Weissert R, von Campenhausen C (1981) Discrimination between stationary objects by the blind cavefish Anoptichthys jordani. J Comp Physiol A 143:375–382 Wersäll J, Flock A (1964) Suppression and restoration of the microphonic output from the lateral line organ after local application of streptomycin. Life Sci 3:1151–1155 Yan HY, Popper AN (1992) Auditory sensitivity of the cichlid fish Astronotus ocellatus (Cuvier). J Comp Physiol A 171:105–109