The optimal control of diffusions
Tóm tắt
Using a differentiation result of Blagovescenskii and Freidlin calculations of Bensoussan are simplified and the adjoint process identified in a stochastic control problem in which the control enters both the drift and diffusion coefficients. A martingale representation result of Elliott and Kohlmann is then used to obtain the integrand in a stochastic integral, and explicit forward and backward equations satisfied by the adjoint process are derived.
Tài liệu tham khảo
J. Baras, R. J. Elliott and M. Kohlmann, The partially observed stochastic minimum principle. SIAM J. Control Optim., 27 (1989), 1279–1292.
A. Bensoussan, Lectures on Stochastic Control. Lecture Notes in Mathematics, Vol. 972. Springer-Verlag, Berlin, 1982.
J. N. Blagovescenskii and M. I. Freidlin, Some properties of diffusion processes depending on a parameter. Dokl. Akad. Nauk. SSSR, 138 (1961), Soviet Math. Dokl., 2 (1961), 633–636.
J. M. Bismut, Theorie probabiliste du Contrôle des Diffusions. Memoirs of the American Mathematical Society, Vol. 167, AMS, Providence, RI, 1976.
J. M. Bismut, An introductory approach to duality in optimal stochastic control. SIAM Rev., 20 (1978), 62–78.
M. H. A. Davis and M. P. Spathopoulos, On the minimum principle for controlled diffusions on manifolds. SIAM J. Control Optim., 27 (1989), 1092–1107.
M. H. A. Davis and P. P. Varaiya, Dynamic programming conditions for partially observed stochastic systems. SIAM J. Control Optim., 11 (1973), 226–261.
R. J. Elliott, Stochastic Calculus and Applications. Applications of Mathematics, Vol. 18. Springer-Verlag, New York, 1982.
R. J. Elliott and M. Kohlmann, A short proof of a martingale representation result. Statist. Probab. Lett., 6 (1988), 327–329.
R. J. Elliott and M. Kohlmann, Integration by parts, homogeneous chaos expansions and smooth densities. Ann. Probab., 17 (1989), 194–207.
R. J. Elliott and M. Kohlmann, The variational principle for optimal control of diffusions with partial information. Systems Control Lett., 12 (1989), 63–69.
R. J. Elliott and M. Kohlmann, The adjoint process in stochastic optimal control. Lecture Notes in Control and Information Sciences, Vol. 126. Springer-Verlag, Berlin, 1989, pp. 115–127.
U. G. Haussmann, On the adjoint process for optimal control of diffusion processes. SIAM Jr. Control Optim., 19 (1981), 221–243 and 710.
U. G. Haussmann, Extremal Controls for Completely Observable Diffusions. Lecture Notes in Control and Information Sciences, Vol. 42. Springer-Verlag, Berlin, 1982, pp. 149–160.
U. G. Haussmann, A Stochastic Minimum Principle for Optimal Control of Diffusions. Pitman/Longman Research Notes in Mathematics, Vol. 151. Longman, Essex, 1986.
H. Kushner, Necessary conditions for continuous parameter stochastic optimization problems. SIAM Jr. Control Optim., 10 (1972), 550–565.