Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Cấu hình tối ưu của động cơ đối kháng dựa trên tổn thất entransy tối đa
Tóm tắt
Một lớp mô hình động cơ nhiệt có hai bể nhiệt với sự rò rỉ nhiệt, nguồn nhiệt ở nhiệt độ cao có dung tích nhiệt hữu hạn và bể nhiệt ở nhiệt độ thấp với dung tích nhiệt vô hạn, được nghiên cứu bằng lý thuyết nhiệt động học thời gian hữu hạn và lý thuyết entransy. Cấu hình tối ưu dựa trên việc giảm thiểu sự sinh entropy và tối đa hóa tổn thất entransy dưới chu trình đã cho được tìm kiếm, sau đó so sánh với cấu hình tối ưu dựa trên công suất đầu ra tối đa, và tất cả các quá trình truyền nhiệt trong mô hình được giả định tuân theo định luật Newton. Kết quả cho thấy rằng, đối với nguồn nhiệt ở nhiệt độ cao với dung tích nhiệt vô hạn, cấu hình tối ưu không thay đổi bất kể có hay không có sự rò rỉ nhiệt; tuy nhiên, đối với bể nhiệt ở nhiệt độ cao có dung tích nhiệt hữu hạn, cấu hình tối ưu là khác nhau giữa các cấu hình dựa trên việc giảm thiểu sinh entropy, tối đa hóa tổn thất entransy, và tối đa hóa công suất đầu ra khi có sự rò rỉ nhiệt.
Từ khóa
#động cơ nhiệt #lý thuyết entransy #cấu hình tối ưu #nhiệt độ cao #rò rỉ nhiệtTài liệu tham khảo
Curzon FL, Ahlborn B (1975) Efficiency of a Carnot engine at maximum power output. Am J Phys 43:22–24
Andresen B (1983) Finite-time thermodynamics. PhD Thesis, Physics Laboratory II, University of Copenhagen, Copenhagen
Bejan A (1996) Entropy generation on minimization: the new thermodynamics of finite-size device and finite-time processes. J Appl Phys 79:1191–1218
Berry RS, Kazakov VA, Sieniutycz S et al (1999) Thermodynamic optimization of finite time processes. Wiley, Chichester
Chen LG, Wu C, Sun FR (1999) Finite time thermodynamic optimization or entropy generation minimization of energy systems. J Non-Equilib Thermody 24:327–359
Chen LG, Sun FR (2004) Advances in finite time thermodynamics: analysis and optimization. Nova Science Publishers, New York
Chen LG (2005) Finite time thermodynamic analysis of irreversible processes and cycles. Higher Education Press, Beijing
Sieniutycz S, Jezowski J (2009) Energy optimization in process systems. Elsevier, London
Andresen B (2011) Current trends in finite-time thermodynamics. Angew Chem Int Ed 50:2690–2704
Feidt M (2012) Thermodynamics of energy systems and processes: a review and perspectives. J Appl Fluid Mech 5:85–98
Yan ZJ (1984) Efficiency of a cycle at maximum power output and with a finite reservoir. J Eng Thermophys 5:125–131
Grazzini G (1991) Work from irreversible heat engine. Energy Int J 16:747–755
Lee Y, Kin SS (1991) An analytical formula for the estimation a Rankine cycle’s heat engine efficiency at maximum power. Int J Energy Res 15:149–159
Ibrahim OM, Klein SA, Mitchell JW (1991) Optimum heat-power cycles for specified boundary conditions. Trans ASME J Eng Gas 113:514–521
Chen LG, Zheng JL, Sun FR et al (2001) Power density analysis and optimization of a regenerated closed variable temperature heat reservoir Brayton cycle. J Phys D 34:1727–1739
Rubin MH (1979) Optimal configuration of a class of irreversible heat engines I. Phys Rev A 19:1272–1276
Ondrechen MJ, Rubin MH, Band YB (1983) The generalized Carnot cycles: a working fluid operating in finite time between heat sources and sinks. J Chem Phys 78:4721–4727
Yan ZJ, Chen LG (1997) Optimal performance of an endoreversible cycle operating between a heat source and sink of finite capacities. J Phys A 30:8119–8127
Yan ZJ, Chen LG (1990) Optimal performance of a generalized Carnot cycles for another linear heat transfer law. J Chem Phys 92:1994–1998
Xiong GH, Chen JC, Yan ZJ (1980) Effect of heat transfer law on performance of generalized Carnot cycles. Nat Sci 28:489–493
Chen LG, Zhu XQ, Sun FR et al (2004) Optimal configurations and performance for a generalized Carnot cycle assuming the heat transfer law Q ∝ (ΔT)m. Appl Energy 78:305–313
Chen LG, Zhu XQ, Sun FR et al (2006) Effect of mixed heat resistance on the optimal configuration and performance of a heat-engine cycle. Appl Energy 83:537–544
Chen LG, Zhou SB, Sun FR et al (2002) Optimal configuration and performance of heat engines with heat leak and finite heat capacity. Open Syst Inf Dyn 9:85–96
Chen LG, Sun FR, Wu C (2006) Optimal configuration of a two-heat-reservoir heat-engine with heat leak and finite heat capacity. Appl Energy 83:71–81
Li J, Chen LG, Sun FR (2009) Optimal configuration for a finite high-temperature source heat engine cycle with complex heat transfer law. Sci China Ser G Phys Mech Astron 52:587–592
Guo ZY, Liang XG, Zhu HY (2006) Entransy: a physical quantity describing heat transfer ability. Pro Nat Sci 16:1288–1296
Guo ZY, Zhu HY, Liang XG (2007) Entransy: a physical quantity describing heat transfer ability. Int J Heat Mass Transfer 50:2545–2556
Guo ZY, Cheng XG, Xia ZZ (2003) Least dissipation principle of heat transport potential capacity and its application in heat conduction optimization. Chin Sci Bull 48:406–410
Wei SH, Chen LG, Sun FR (2009) Constructal multidisciplinary optimization of electromagnet based on entransy dissipation minimization. Sci China Ser E Technol Sci 52:2981–2989
Wu J, Cheng XG, Meng JA et al (2006) Potential capacity dissipation extremum and entropy generation minimization in laminar convective heat transfer. J Eng Thermophys 27:100–102
Wu J, Liang XG (2008) Application of entransy dissipation extremum principle in radiative heat transfer optimization. Sci China Ser E Technol Sci 51:1306–1314
Cheng XT, Liang XG (2011) Entransy flux of heat radiation and its application to enclosures with opaque surfaces. Int J Heat Mass Transfer 54:269–278
Xia SJ, Chen LG, Sun FR (2009) Optimization for entransy dissipation minimization in heat exchanger. Chin Sci Bull 52:3413–3504
Chen LG, Xiao QH, Xie ZH et al (2012) T-shaped assembly of fins with constructal entransy dissipation rate minimization. Int Commun Heat Mass Transfer 39:1556–1562
Chen LG (2012) Progress in entransy theory and its applications. Chin Sci Bull 57(34):4404–4426
Chen LG (2013) Optimization for mass transfer processes based on mass entransy dissipation extremum principle. J Naval Univ Eng 25:1–26
Chen Q, Liang XG, Guo ZY (2013) Entransy theory for the optimization of heat transfer: a review and update. Int J Heat Mass Transfer 63:65–81
Cheng XT, Liang XG, Guo ZY (2011) Entransy decrease principle of heat transfer in an isolated system. Chin Sci Bull 56:847–854
Liu XB (2009) Entransy Analysis of Thermal Performance for Heat Exchangers and Cooling Channel Networks. PhD Dissertation, Tsinghua University
Chen Q, Wu J, Wang MR et al (2010) A comparison of optimization theories for energy conservation in heat exchanger groups. Chin Sci Bull 56:449–454
Cheng XT, Liang XG (2012) Entransy loss in thermodynamic processes and its application. Energy 44:964–972
Sun C, Cheng XT, Liang XG (2013) Analyses of the constitution and application for entransy loss. J Eng Thermophys 34:914–917
Cheng XT, Chen Q, Hu GJ et al (2013) Entransy balance for the closed system undergoing thermodynamic processes. Int J Heat Mass Transfer 60:180–187
Cheng XT, Liang XG (2013) Discussion on the entransy expressions of the thermodynamic laws and their applications. Energy 56:46–51
Zhou B, Cheng XT, Liang XG (2013) Power output analyses and optimizations of the Stirling cycle. Sci China Technol Sci 56:228–236
Wang WH, Cheng XT, Liang XG (2013) Entropy and entransy analyses and optimizations of the Rankine cycle. Energy Convers Manage 68:82–88
Cheng XT, Liang XG (2013) Analyses of entropy generation and heat entransy loss in heat transfer and heat-work conversion. Int J Heat Mass Transfer 64:903–909
Wang WH, Cheng XT, Liang XG (2013) Analyses of the endoreversible Carnot cycle with entropy theory and entransy theory. Chin Phys B 22:110506
Cheng XT, Liang XG (2012) Heat-work conversion optimization of one-stream heat exchanger networks. Energy 47:421–429
Cheng XT, Wang WH, Liang XG (2012) Optimization of heat transfer and heat-work conversion based on generalized heat transfer law. Sci China Technol Sci 55:2847–2855
Zhou B, Cheng XT, Liang XG (2013) Power and heat-work conversion efficiency analyses for the irreversible Carnot engines by entransy and entropy. J Appl Phys 113:124904