Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nghiên cứu về dinh dưỡng gen của chuột C57BL/6N được cho ăn chế độ ăn nhiều chất béo trong thời gian ngắn nhấn mạnh sự thay đổi sớm trong biểu hiện của các gen đồng hồ
Tóm tắt
Chuột được cho ăn chế độ ăn nhiều chất béo lâu dài (HFD) là một mô hình đã được thiết lập cho các rối loạn chuyển hóa ở người, chẳng hạn như béo phì và tiểu đường. Tuy nhiên, cũng cần phải nghiên cứu những ảnh hưởng của việc cho ăn HFD trong thời gian ngắn để hiểu những sự kiện nào xảy ra đầu tiên kích hoạt sự khởi phát của tình trạng tiền bệnh, được gọi là hội chứng chuyển hóa, làm tăng nguy cơ phát triển các bệnh lâm sàng. Trong nghiên cứu này, chuột C57BL/6N được cho ăn chế độ ăn kiểm soát (CTR) hoặc HFD trong 1 tuần (T1) hoặc 2 tuần (T2). Các hiệu ứng chuyển hóa và mô học đã được kiểm tra. Transcriptome ruột già của chuột HFD và CTR đã được so sánh ở T2 bằng phân tích vi mạch. Các gen biểu hiện khác biệt đã được xác thực bằng PCR theo thời gian thực trong ruột già và trong gan. Sau 2 tuần cho ăn chế độ ăn, chuột HFD cho thấy một mô hình biểu hiện khác thường chỉ trong bảy gen, bốn trong số đó liên quan đến con đường điều chỉnh đồng hồ sinh học. PCR theo thời gian thực xác nhận kết quả vi mạch ở ruột già và tiết lộ xu hướng tương tự về sự thay đổi biểu hiện của các gen đồng hồ ở gan. Các phát hiện này gợi ý rằng các gen đồng hồ có thể đóng vai trò quan trọng trong việc kiểm soát sớm các hệ thống dẫn ra khỏi ruột để đáp ứng với HFD ở chuột và rằng sự thay đổi biểu hiện của chúng cũng có thể đại diện cho một tín hiệu sớm của sự phát triển tình trạng viêm ruột.
Từ khóa
#chuột C57BL/6N #chế độ ăn nhiều chất béo #gen đồng hồ #hội chứng chuyển hóa #biểu hiện gen #vi mạchTài liệu tham khảo
Akagiri S, Naito Y, Ichikawa H, Mizushima K, Takagi T, Handa O, Kokura S, Yoshikawa T (2008) A mouse model of metabolic syndrome; increase in visceral adipose tissue precedes the development of fatty liver and insulin resistance in high-fat diet-fed male KK/Ta mice. J Clin Biochem Nutr 42:150–157
Anderson LH, Martinson BC, Crain AL, Pronk NP, Whitebird RR, O’Connor PJ, Fine LJ (2005) Health care charges associated with physical inactivity, overweight, and obesity. Prev Chronic Dis 2:A09
Anderson SR, Gilge DA, Steiber AL, Previs SF (2008) Diet-induced obesity alters protein synthesis: tissue-specific effects in fasted versus fed mice. Metabolism 57:347–354
Balk EM, Lichtenstein AH, Chung M, Kupelnick B, Chew P, Lau J (2006) Effects of omega-3 fatty acids on serum markers of cardiovascular disease risk: a systematic review. Atherosclerosis 189:19–30
Barnea M, Madar Z, Froy O (2009) High-fat diet delays and fasting advances the circadian expression of adiponectin signaling components in mouse liver. Endocrinology 150:161–168
Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193
Bradley PP, Priebat DA, Christensen RD, Rothstein G (1982) Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol 78:206–209
Calder PC (2002) Dietary modification of inflammation with lipids. Proc Nutr Soc 61(3):345–358
Calder PC (2003) N-3 polyunsaturated fatty acids and inflammation: from molecular biology to the clinic. Lipids 38(4):343–352
Chapman-Kiddell CA, Davies PS, Gillen L, Radford-Smith GL (2010) Role of diet in the development of inflammatory bowel disease. Inflamm Bowel Dis 16(1):137–151
Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159
Dallmann R, Weaver DR (2010) Altered body mass regulation in male mPeriod mutant mice on high-fat diet. Chronobiol Int 27:1317–1328
de Kretser DM, O’Hehir RE, Hardy CL, Hedger MP (2012) The roles of activin A and its binding protein, follistatin, in inflammation and tissue repair. Mol Cell Endocrinol 359:101–106
de Wilde J, Mohren R, van den Berg S, Boekschoten M, Dijk KW, de Groot P, Müller M, Mariman E, Smit E (2008) Short-term high fat-feeding results in morphological and metabolic adaptations in the skeletal muscle of C57BL/6J mice. Physiol Genomics 32:360–369
de Wit NJ, Bosch-Vermeulen H, de Groot PJ, Hooiveld GJ, Bromhaar MM, Jansen J, Müller M, van der Meer R (2008) The role of the small intestine in the development of dietary fat-induced obesity and insulin resistance in C57BL/6J mice. BMC Med Genomics 6:1–14
Ding S, Chi MM, Scull BP, Rigby R, Schwerbrock NM, Magness S, Jobin C, Lund PK (2010) High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS ONE 5(8):e12191
Gallou-Kabani C, Vige A, Gross MS, Rabes JP, Boileau C, Larue-Achagiotis C, Tomé D, Jais JP, Junien C (2007) C57BL/6J and A/J mice fed a high-fat diet delineate components of metabolic syndrome. Obesity (Silver Spring) 15:1996–2005
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genom Biol 5:R80
Guillaumond F, Dardente H, Giguere V, Cermakian N (2005) Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J Biol Rhythms 20:391–403
Hemmeryckx B, Himmelreich U, Hoylaerts MF, Lijnen HR (2011) Impact of clock gene Bmal1 deficiency on nutritionally induced obesity in mice. Obesity (Silver Spring) 19:659–661
Hsieh MC, Yang SC, Tseng HL, Hwang LL, Chen CT, Shien KR (2010) Abnormal expressions of circadian-clock and circadian clock-controlled genes in the livers and kidneys of long-term, high-fat-diet-treated mice. Int J Obes (Lond) 34:227–239
Isken F, Klaus S, Petzke KJ, Loddenkemper C, Pfeiffer AF, Weickert MO (2010) Impairment of fat oxidation under high- vs. low-glycemic index diet occurs before development of an obese phenotype. Am J Physiol Endocrinol Metab 298(2):E287–E295
Jones KL, de Kretser DM, Patella S, Phillips DJ (2004) Activin A and follistatin in systemic inflammation. Mol Cell Endocrinol 225:119–125
Jousilahti P, Salomaa V, Rasi V, Vahtera E, Palosuo T (2001) The association of c-reactive protein, serum amyloid a and fibrinogen with prevalent coronary heart disease—baseline findings of the PAIS project. Atherosclerosis 156:451–456
Jump DB (2011) Fatty acid regulation of hepatic lipid metabolism. Curr Opin Clin Nutr Metab Care 14(2):115–120
Kimokoti RW, Brown LS (2011) Dietary management of the metabolic syndrome. Clin Pharmacol Ther 90(1):184–187
Kintscher U, Hartge M, Hess K, Foryst-Ludwig A, Clemenz M, Wabitsch M, Fischer-Posovszky P, Barth TF, Dragun D, Skurk T, Hauner H, Blüher M, Unger T, Wolf AM, Knippschild U, Hombach V, Marx N (2008) T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler Thromb Vasc Biol 28(7):1304–1310
Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y, Turek FW, Bass J (2007) High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 6:414–421
Kreeft AJ, Moen CJ, Porter G, Kasanmoentalib S, Sverdlov R, van Gorp PJ, Havekes LM, Frants RR, Hofker MH (2005) Genomic analysis of the response of mouse models to high-fat feeding shows a major role of nuclear receptors in the simultaneous regulation of lipid and inflammatory genes. Atherosclerosis 182:249–257
Lewis KE, Kirk EA, McDonald TO, Wang S, Wight TN, O’Brien KD, Chait A (2004) Increase in serum amyloid a evoked by dietary cholesterol is associated with increased atherosclerosis in mice. Circulation 110:540–545
Lichtenstein AH (2006) Thematic review series: patient-oriented research. Dietary fat, carbohydrate, and protein: effects on plasma lipoprotein patterns. J Lipid Res 47:1661–1667
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-delta delta C(T)) method. Methods 25:402–408
Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, Ivanova G, Omura C, Mo S, Vitaterna MH, Lopez JP, Philipson LH, Bradfield CA, Crosby SD, JeBailey L, Wang X, Takahashi JS, Bass J (2010) Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466:627–631
McGee M, Chen Z (2006) Parameter estimation for the exponential-normal convolution model for background correction of Affymetrix GeneChip data. Stat Appl Genet Mol Biol 5:Article 24
Mitsui S, Yamaguchi S, Matsuo T, Ishida Y, Okamura H (2001) Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Dev 15:995–1006
Paigen B (1995) Genetics of responsiveness to high-fat and high-cholesterol diets in the mouse. Am J Clin Nutr 62:458S–462S
Patrone V, Ferrari S, Lizier M, Lucchini F, Minuti A, Tondelli B, Trevisi E, Rossi F, Callegari ML (2012) Short-term modifications in the distal gut microbiota of weaning mice induced by a high-fat diet. Microbiology 158:983–992
Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36
Ramakrishnan SN, Lau P, Burke LJ, Muscat GE (2005) Rev-erbbeta regulates the expression of genes involved in lipid absorption in skeletal muscle cells: evidence for cross-talk between orphan nuclear receptors and myokines. J Biol Chem 280:8651–8659
Ridker PM, Hennekens CH, Buring JE, Rifai N (2000) C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 342:836–843
Ritchie ME, Diyagama D, Neilson J, van Laar R, Dobrovic A, Holloway A, Smyth GK (2006) Empirical array quality weights in the analysis of microarray data. BMC Bioinformatics 7(261):261
Sasaki T, Fujikane Y, Ogino Y, Osada K, Sugano M (2010) Hepatic function and lipid metabolism are modulated by short-term feeding of cholesterol oxidation products in rats. J Oleo Sci 59(9):503–507
Shimba S, Ishii N, Ohta Y, Ohno T, Watabe Y, Hayashi M, Wada T, Aoyagi T, Tezuka M (2005) Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proc Natl Acad Sci U S A 102:12071–12076
Smyth GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:Article 3
Sunderman FW, Nomoto S (1970) Measurement of human serum ceruloplasmin by its p-phenylenediamine oxidase activity. Clin Chem 16:903–910
Tsunoda N, Ikemoto S, Takahashi M, Maruyama K, Watanabe H, Goto N, Ezaki O (1998) High-monounsaturated fat diet-induced obesity and diabetes in C57BL/6J mice. Metabolism 47:724–730
Ueda HR, Hayashi S, Chen W, Sano M, Machida M, Shigeyoshi Y, Iino M, Hashimoto S (2005) System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet 37:187–192
Uhlar CM, Whitehead AS (1999) Serum amyloid A, the major vertebrate acute-phase reactant. Eur J Biochem 265:501–523
Yanagihara H, Ando H, Hayashi Y, Obi Y, Fujimura A (2006) High-fat feeding exerts minimal effects on rhythmic mRNA expression of clock genes in mouse peripheral tissues. Chronobiol Int 23:905–914
Yàñez-Mó M, Barreiro O, Gordon-Alonso M, Sala-Valdés M, Sánchez-Madrid F (2009) Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes. Trends Cell Biol 19(9):434–446