The number of ideals in a quadratic field

Proceedings - Mathematical Sciences - Tập 104 - Trang 157-165 - 1994
M. N. Huxley1, N. Watt1
1School of Mathematics, University of Wales College of Cardiff, Cardiff, UK

Tóm tắt

LetK be a quadratic Geld, and letR(N) be the number of integer ideals inK with norm at most AT. Letx with conductork be the quadratic character associated withK. Then |R(N)−NL(1,x)|⩽Bk 50/73 N 23/73(logN)461/146 forN ≥Ak, whereA andB are constants. ForN ≥Ak c,C sufficiently large, the factork 50/73 may be replaced by (d(k))4/73 k 46/73.

Tài liệu tham khảo

Davenport H, Multiplicative number theory (1967) (Chicago: Markham) Huxley M N, Exponential sums and lattice points,Proc. London Math. Soc. 60 (1990) 471–502 Huxley M N, Corrigendum,Proc. London Math. Soc. 66 (1993) 70 Huxley M N, Exponential sums and lattice points II,Proc. London Math. Soc. 66 (1993) 279–301 Huxley M N, Area, lattice points and exponential sums, (to appear) Iwaniec H and Mozzochi C J, On the circle and divisor problems,J. Number Theory 29 (1988) 60–93 Landau E, Vorlesungen über Zahlentheorie (1927) (Leipzig: Hirsel) Watt N, A hybrid bound for Dirichlet L-functions on the critical Une,Proc. Amalfi Conference in analytic number theory (Salerno U P) (1992) 387–392