The novel Sr3LiSbO6:Mn4+, Ca2+ far-red-emitting phosphors with over 95% internal quantum efficiency for indoor plant growth LEDs

Journal of Luminescence - Tập 237 - Trang 118165 - 2021
Linyan Fu1, Yunlong Yang1, Yi Zhang1, Xuefei Ren1, Ying‐Jie Zhu1, Jiajie Zhu1, Yi Wu1, Jian Wang1, Xing Feng1
1College of Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Gu, 2020, Red shift properties, crystal field theory and nephelauxetic effect on Mn4+-doped SrMgAl10-yGayO7 red phosphor for plant growth LED light, Chem. Eng. J., 396, 125208, 10.1016/j.cej.2020.125208

Wang, 2019, Novel Ca2GdTaO6:Mn4+, M (M = Li+, Na+, K+, and Mg2+) red phosphors for plant cultivation light-emitting diodes: synthesis and luminescence properties, J. Lumin., 214, 116525, 10.1016/j.jlumin.2019.116525

Liang, 2018, Far-red-emitting double-perovskite CaLaMgSbO6:Mn4+ phosphors with high photoluminescence efficiency and thermal stability for indoor plant cultivation LEDs, RSC Adv., 8, 31666, 10.1039/C8RA06708B

Huang, 2018, High-efficiency and thermally stable far-red-emitting NaLaMgWO6:Mn4+ phosphors for indoor plant growth light-emitting diodes, Opt. Lett., 43, 3305, 10.1364/OL.43.003305

Adachi, 2018, Photoluminescence properties of Mn4+-activated oxide phosphors for use in white-LED applications: a review, J. Lumin., 202, 263, 10.1016/j.jlumin.2018.05.053

Liang, 2019, Deep-red-emitting Ca2LuSbO6:Mn4+ phosphors for plant growth LEDs: synthesis, crystal structure, and photoluminescence properties, J. Alloys Compd., 804, 521, 10.1016/j.jallcom.2019.06.312

Sun, 2018, Thermally stable La2LiSbO6:Mn4+, Mg2+ far-red emitting phosphors with over 90% internal quantum efficiency for plant growth LEDs, RSC Adv., 8, 31835, 10.1039/C8RA06435K

Shi, 2019, Highly efficient and thermally stable CaMgLaSbO6:Mn4+ red phosphor for indoor plant growth, Inorg. Chem. Commun., 110, 107607, 10.1016/j.inoche.2019.107607

Yang, 2018, Synthesis and photoluminescence properties of red-emitting NaLaMgWO6:Sm3+, Eu3+ phosphors for white LED applications, J. Lumin., 199, 323, 10.1016/j.jlumin.2018.03.011

Zhang, 2020, Novel highly luminescent double-perovskite Ca2GdSbO6:Eu3+ red phosphors with high color purity for white LEDs: synthesis, crystal structure, and photoluminescence properties, J. Lumin., 221, 117105, 10.1016/j.jlumin.2020.117105

Li, 2018, Synthesis, energy transfer and photoluminescence properties of thermal-stable multicolour-emitting Ca3Gd(AlO)3(BO3):Tb3+, Eu3+ phosphors, J. Lumin., 204, 386, 10.1016/j.jlumin.2018.08.041

Guo, 2017, Effects of Ta–O charge transfer band on the color-tunable emissions of Dy3+-activated SrLaMgTaO6 phosphors, J. Lumin., 181, 96, 10.1016/j.jlumin.2016.09.001

Liu, 2014, Luminescence characteristics of full-color emitting phosphors Ca2(Ca2x/3In1-xNbx/3)NbO6:Eu3+, J. Lumin., 153, 333, 10.1016/j.jlumin.2014.03.036

Fan, 2019, Thermally stable double-perovskite Ca3TeO6:Eu3+ red-emitting phosphors with high color purity, J. Lumin., 211, 14, 10.1016/j.jlumin.2019.03.001

Arya, 2020, Hydrothermal synthesis of rGO-Bi2WO6 heterostructure for the photocatalytic degradation of levofloxacin, Opt. Mater., 107, 110126, 10.1016/j.optmat.2020.110126

Arai, 2011, Optical properties of Mn4+-activated Na2SnF6 and Cs2SnF6 red phosphors, J. Lumin., 131, 2652, 10.1016/j.jlumin.2011.06.042

Zhang, 2018, Green synthesis of K2TiF6:Mn4+ using KHF2 as accessory ingredient: a novel airtight solid-state strategy, Opt. Mater., 86, 165, 10.1016/j.optmat.2018.10.010

Fonseca, 2017, Optical properties of Mn4+ ions in Cs2NaAlF6 and Cs2NaGaF6 single crystals, Opt. Mater., 64, 323, 10.1016/j.optmat.2016.12.026

Ha, 2020, Synthesis of Mn4+ activated Na2SiF6 red-emitting phosphors using an ionic liquid, J. Lumin., 218, 116835, 10.1016/j.jlumin.2019.116835

Adachi, 2020, Review—Mn4+-activated red and deep red-emitting phosphors, ECS J. Solid State Sci. Technol., 9

Cao, 2018, Perovskite La2LiRO6:Mn4+ (R = Nb, Ta, Sb) phosphors: synthesis and luminescence properties, Inorg. Chim. Acta., 483, 593, 10.1016/j.ica.2018.09.015

Sun, 2018, Preparation, characterization, and luminescence properties of double perovskite SrLaMgSbO6:Mn4+ far-red emitting phosphors for indoor plant growth lighting, RSC Adv., 8, 35187, 10.1039/C8RA06983B

Fu, 2017, Synthesis, structure, and luminescence properties of a novel double-perovskite Sr2LaNbO6:Mn4+ phosphor, Mater. Res. Bull., 88, 258, 10.1016/j.materresbull.2016.12.045

Liang, 2018, Novel Mn4+-activated LiLaMgWO6 far-red emitting phosphors: high photoluminescence efficiency, good thermal stability, and potential applications in plant cultivation LEDs, RSC Adv., 8, 27144, 10.1039/C8RA05669B

Xiang, 2018, Far-red and near infrared double-wavelength emitting phosphor Gd2ZnTiO6:Mn4+, Yb3+ for plant cultivation LEDs, Dyes Pigments, 154, 257, 10.1016/j.dyepig.2018.03.009

Cao, 2016, Synthesis and luminescence properties of double perovskite Sr2ZnMoO6: Mn4+ deep red phosphor, Opt. Mater., 62, 706, 10.1016/j.optmat.2016.10.047

Li, 2018, A novel deep red-emitting phosphor KMgLaTeO6:Mn4+ with high thermal stability and quantum yield for w-LEDs: structure, site occupancy and photoluminescence properties, Dalton Trans., 47, 2501, 10.1039/C7DT04811D

Shi, 2019, Highly efficient and thermally stable of a novel red phosphor Sr3NaSbO6: Mn4+ for indoor plant growth, J. Lumin., 208, 201, 10.1016/j.jlumin.2018.12.039

Shi, 2019, Synthesis and photoluminescence properties of novel Sr3LiSbO6:Mn4+ red phosphor for indoor plant growth, Opt. Mater., 89, 609, 10.1016/j.optmat.2018.12.047

Park, 2009, Luminescent phosphors, based on rare earth substituted oxyfluorides in the A(1)3-x A(2)xMO4F family with A(1)/A(2)=Sr, Ca, Ba and M=Al, Ga, J. Lumin., 129, 952, 10.1016/j.jlumin.2009.04.005

Zhang, 2020, Luminescence-enhancement and tunable-excitation of far-red emitting La2LiSbO6:Mn4+, Bi3+ plant growth lighting, J. Lumin., 224, 117268, 10.1016/j.jlumin.2020.117268

Yun, 2017, Dual spectra band emissive Eu2+/Mn2+ co-activated alkaline earth phosphates for indoor plant growth novel phosphor converted-LEDs, Phys. Chem. Chem. Phys., 19, 11111, 10.1039/C7CP00742F

Zhang, 2017, Improved preparation technology of color-tunable long afterglow phosphors Sr1.94-xCaxMgSi2O7:Eu0.012+,Dy0.053+, J. Lumin., 192, 310, 10.1016/j.jlumin.2017.04.068

Zhang, 2019, Synthesis and photoluminescence properties of a novel red phosphor SrLaGaO4:Mn4+, J. Am. Ceram. Soc., 102, 1269, 10.1111/jace.15981

Tanabe, 1954, On the absorption spectra of complex ions II, J. Phys. Soc. Jpn., 9, 766, 10.1143/JPSJ.9.766

Adachi, 2020, New analysis model for the determination of Racah and crystal-field splitting parameters: verification and case studies, ECS J. Solid State Sci Technol., 9, 10.1149/2162-8777/ab8879

Halder, 2017, Octahedral distortion induced phonon vibration and electrical conduction in A2NdSbO6 (A=Ba, Sr, Ca), Mater. Chem. Phys., 199, 508, 10.1016/j.matchemphys.2017.06.049

Andrews, 2015, Raman studies of A2MWO6 tungstate double perovskites, Dalton Trans., 14, 10700, 10.1039/C4DT03789H

Adachi, 2021, Review—temperature dependence of luminescence intensity and decay time in Mn4+- activated fluoride and oxyfluoride phosphors, ECS J. Solid State Sci. Technol., 10, 10.1149/2162-8777/abe0af

Liu, 2020, Novel luminescence enhancement and splitting of excitation and emission bands of Na2SiF6:Mn4+, Li+ co-doping, J. Lumin., 217, 116770, 10.1016/j.jlumin.2019.116770

Chen, 2019, Bi3+ and Mn4+ co-doped La2MgGeO6 blue-red tunable emission phosphors based on energy transfer for agricultural applications, Optik, 179, 1035, 10.1016/j.ijleo.2018.11.043

Xiang, 2019, Enhancement of red emission and site analysis in Eu2+ doped new-type structure Ba3CaK(PO4)3 for plant growth white LEDs, Chem. Eng. J., 356, 236, 10.1016/j.cej.2018.09.036

Deng, 2018, Ultrastable red-emitting phosphor-in-glass for superior high-power artificial plant growth LEDs, J. Mater. Chem. C., 6, 7, 10.1039/C7TC05250B

Zhong, 2020, Two targets with one strategy: insights into the role of aluminum atoms on the luminescence properties and thermal stability in Mn4+-doped calcium aluminozincate phosphor, J. Alloys Compd., 849, 156567, 10.1016/j.jallcom.2020.156567