The novel Sr3LiSbO6:Mn4+, Ca2+ far-red-emitting phosphors with over 95% internal quantum efficiency for indoor plant growth LEDs
Tóm tắt
Từ khóa
Tài liệu tham khảo
Gu, 2020, Red shift properties, crystal field theory and nephelauxetic effect on Mn4+-doped SrMgAl10-yGayO7 red phosphor for plant growth LED light, Chem. Eng. J., 396, 125208, 10.1016/j.cej.2020.125208
Wang, 2019, Novel Ca2GdTaO6:Mn4+, M (M = Li+, Na+, K+, and Mg2+) red phosphors for plant cultivation light-emitting diodes: synthesis and luminescence properties, J. Lumin., 214, 116525, 10.1016/j.jlumin.2019.116525
Liang, 2018, Far-red-emitting double-perovskite CaLaMgSbO6:Mn4+ phosphors with high photoluminescence efficiency and thermal stability for indoor plant cultivation LEDs, RSC Adv., 8, 31666, 10.1039/C8RA06708B
Huang, 2018, High-efficiency and thermally stable far-red-emitting NaLaMgWO6:Mn4+ phosphors for indoor plant growth light-emitting diodes, Opt. Lett., 43, 3305, 10.1364/OL.43.003305
Adachi, 2018, Photoluminescence properties of Mn4+-activated oxide phosphors for use in white-LED applications: a review, J. Lumin., 202, 263, 10.1016/j.jlumin.2018.05.053
Liang, 2019, Deep-red-emitting Ca2LuSbO6:Mn4+ phosphors for plant growth LEDs: synthesis, crystal structure, and photoluminescence properties, J. Alloys Compd., 804, 521, 10.1016/j.jallcom.2019.06.312
Sun, 2018, Thermally stable La2LiSbO6:Mn4+, Mg2+ far-red emitting phosphors with over 90% internal quantum efficiency for plant growth LEDs, RSC Adv., 8, 31835, 10.1039/C8RA06435K
Shi, 2019, Highly efficient and thermally stable CaMgLaSbO6:Mn4+ red phosphor for indoor plant growth, Inorg. Chem. Commun., 110, 107607, 10.1016/j.inoche.2019.107607
Yang, 2018, Synthesis and photoluminescence properties of red-emitting NaLaMgWO6:Sm3+, Eu3+ phosphors for white LED applications, J. Lumin., 199, 323, 10.1016/j.jlumin.2018.03.011
Zhang, 2020, Novel highly luminescent double-perovskite Ca2GdSbO6:Eu3+ red phosphors with high color purity for white LEDs: synthesis, crystal structure, and photoluminescence properties, J. Lumin., 221, 117105, 10.1016/j.jlumin.2020.117105
Li, 2018, Synthesis, energy transfer and photoluminescence properties of thermal-stable multicolour-emitting Ca3Gd(AlO)3(BO3):Tb3+, Eu3+ phosphors, J. Lumin., 204, 386, 10.1016/j.jlumin.2018.08.041
Guo, 2017, Effects of Ta–O charge transfer band on the color-tunable emissions of Dy3+-activated SrLaMgTaO6 phosphors, J. Lumin., 181, 96, 10.1016/j.jlumin.2016.09.001
Liu, 2014, Luminescence characteristics of full-color emitting phosphors Ca2(Ca2x/3In1-xNbx/3)NbO6:Eu3+, J. Lumin., 153, 333, 10.1016/j.jlumin.2014.03.036
Fan, 2019, Thermally stable double-perovskite Ca3TeO6:Eu3+ red-emitting phosphors with high color purity, J. Lumin., 211, 14, 10.1016/j.jlumin.2019.03.001
Arya, 2020, Hydrothermal synthesis of rGO-Bi2WO6 heterostructure for the photocatalytic degradation of levofloxacin, Opt. Mater., 107, 110126, 10.1016/j.optmat.2020.110126
Arai, 2011, Optical properties of Mn4+-activated Na2SnF6 and Cs2SnF6 red phosphors, J. Lumin., 131, 2652, 10.1016/j.jlumin.2011.06.042
Zhang, 2018, Green synthesis of K2TiF6:Mn4+ using KHF2 as accessory ingredient: a novel airtight solid-state strategy, Opt. Mater., 86, 165, 10.1016/j.optmat.2018.10.010
Fonseca, 2017, Optical properties of Mn4+ ions in Cs2NaAlF6 and Cs2NaGaF6 single crystals, Opt. Mater., 64, 323, 10.1016/j.optmat.2016.12.026
Ha, 2020, Synthesis of Mn4+ activated Na2SiF6 red-emitting phosphors using an ionic liquid, J. Lumin., 218, 116835, 10.1016/j.jlumin.2019.116835
Adachi, 2020, Review—Mn4+-activated red and deep red-emitting phosphors, ECS J. Solid State Sci. Technol., 9
Cao, 2018, Perovskite La2LiRO6:Mn4+ (R = Nb, Ta, Sb) phosphors: synthesis and luminescence properties, Inorg. Chim. Acta., 483, 593, 10.1016/j.ica.2018.09.015
Sun, 2018, Preparation, characterization, and luminescence properties of double perovskite SrLaMgSbO6:Mn4+ far-red emitting phosphors for indoor plant growth lighting, RSC Adv., 8, 35187, 10.1039/C8RA06983B
Fu, 2017, Synthesis, structure, and luminescence properties of a novel double-perovskite Sr2LaNbO6:Mn4+ phosphor, Mater. Res. Bull., 88, 258, 10.1016/j.materresbull.2016.12.045
Liang, 2018, Novel Mn4+-activated LiLaMgWO6 far-red emitting phosphors: high photoluminescence efficiency, good thermal stability, and potential applications in plant cultivation LEDs, RSC Adv., 8, 27144, 10.1039/C8RA05669B
Xiang, 2018, Far-red and near infrared double-wavelength emitting phosphor Gd2ZnTiO6:Mn4+, Yb3+ for plant cultivation LEDs, Dyes Pigments, 154, 257, 10.1016/j.dyepig.2018.03.009
Cao, 2016, Synthesis and luminescence properties of double perovskite Sr2ZnMoO6: Mn4+ deep red phosphor, Opt. Mater., 62, 706, 10.1016/j.optmat.2016.10.047
Li, 2018, A novel deep red-emitting phosphor KMgLaTeO6:Mn4+ with high thermal stability and quantum yield for w-LEDs: structure, site occupancy and photoluminescence properties, Dalton Trans., 47, 2501, 10.1039/C7DT04811D
Shi, 2019, Highly efficient and thermally stable of a novel red phosphor Sr3NaSbO6: Mn4+ for indoor plant growth, J. Lumin., 208, 201, 10.1016/j.jlumin.2018.12.039
Shi, 2019, Synthesis and photoluminescence properties of novel Sr3LiSbO6:Mn4+ red phosphor for indoor plant growth, Opt. Mater., 89, 609, 10.1016/j.optmat.2018.12.047
Park, 2009, Luminescent phosphors, based on rare earth substituted oxyfluorides in the A(1)3-x A(2)xMO4F family with A(1)/A(2)=Sr, Ca, Ba and M=Al, Ga, J. Lumin., 129, 952, 10.1016/j.jlumin.2009.04.005
Zhang, 2020, Luminescence-enhancement and tunable-excitation of far-red emitting La2LiSbO6:Mn4+, Bi3+ plant growth lighting, J. Lumin., 224, 117268, 10.1016/j.jlumin.2020.117268
Yun, 2017, Dual spectra band emissive Eu2+/Mn2+ co-activated alkaline earth phosphates for indoor plant growth novel phosphor converted-LEDs, Phys. Chem. Chem. Phys., 19, 11111, 10.1039/C7CP00742F
Zhang, 2017, Improved preparation technology of color-tunable long afterglow phosphors Sr1.94-xCaxMgSi2O7:Eu0.012+,Dy0.053+, J. Lumin., 192, 310, 10.1016/j.jlumin.2017.04.068
Zhang, 2019, Synthesis and photoluminescence properties of a novel red phosphor SrLaGaO4:Mn4+, J. Am. Ceram. Soc., 102, 1269, 10.1111/jace.15981
Tanabe, 1954, On the absorption spectra of complex ions II, J. Phys. Soc. Jpn., 9, 766, 10.1143/JPSJ.9.766
Adachi, 2020, New analysis model for the determination of Racah and crystal-field splitting parameters: verification and case studies, ECS J. Solid State Sci Technol., 9, 10.1149/2162-8777/ab8879
Halder, 2017, Octahedral distortion induced phonon vibration and electrical conduction in A2NdSbO6 (A=Ba, Sr, Ca), Mater. Chem. Phys., 199, 508, 10.1016/j.matchemphys.2017.06.049
Andrews, 2015, Raman studies of A2MWO6 tungstate double perovskites, Dalton Trans., 14, 10700, 10.1039/C4DT03789H
Adachi, 2021, Review—temperature dependence of luminescence intensity and decay time in Mn4+- activated fluoride and oxyfluoride phosphors, ECS J. Solid State Sci. Technol., 10, 10.1149/2162-8777/abe0af
Liu, 2020, Novel luminescence enhancement and splitting of excitation and emission bands of Na2SiF6:Mn4+, Li+ co-doping, J. Lumin., 217, 116770, 10.1016/j.jlumin.2019.116770
Chen, 2019, Bi3+ and Mn4+ co-doped La2MgGeO6 blue-red tunable emission phosphors based on energy transfer for agricultural applications, Optik, 179, 1035, 10.1016/j.ijleo.2018.11.043
Xiang, 2019, Enhancement of red emission and site analysis in Eu2+ doped new-type structure Ba3CaK(PO4)3 for plant growth white LEDs, Chem. Eng. J., 356, 236, 10.1016/j.cej.2018.09.036
Deng, 2018, Ultrastable red-emitting phosphor-in-glass for superior high-power artificial plant growth LEDs, J. Mater. Chem. C., 6, 7, 10.1039/C7TC05250B