The nonlinear elastic response of filled elastomers: Experiments vs. theory for the basic case of particulate fillers of micrometer size
Tài liệu tham khảo
ABAQUS Version 6.14 Documentation, 2014. Dassault Systemes Simulia Corp.Providence, RI, USA.
Benevides, 2015, Mechanical behavior of the alumina-filled silicone rubber under pure shear at finite strain, Mech. Mater., 85, 57, 10.1016/j.mechmat.2015.02.011
Bergström, 1999, Mechanical behavior of particle-filled elastomers, Rubber Chem. Technol., 69, 781
Berriot, 2003, Reinforcement of model filled elastomers: characterization of the crosslinking density at the filler-elastomer interface by 1h NMR measurements, Polymer, 44, 1437, 10.1016/S0032-3861(02)00882-0
Braides, 1985, Homogenization of some almost periodic coercive functionals, Rend. Accad. Naz. XL, 9, 313
Chi, 2016, A variational formulation with rigid-body constraints for finite elasticity: theory, finite element implementation, and applications, Comput. Mech., 57, 325, 10.1007/s00466-015-1234-2
Danas, 2012, Experiments and modeling of iron-particle-filled magnetorheological elastomers, J. Mech. Phys. Solids, 60, 120, 10.1016/j.jmps.2011.09.006
Diguet, 2010, Shape effect in the magnetostriction of ferromagnetic composite, J. Magn. Magn. Mater., 322, 3337, 10.1016/j.jmmm.2010.06.020
Einstein, 1906, Eine neue bestimmung der moleküldimensionen [A new determination of molecular dimensions], Ann. Phys., 324, 289, 10.1002/andp.19063240204
Frogley, 2003, Mechanical properties of carbon nanoparticlereinforced elastomers, Compos. Sci. Technol., 63, 1647, 10.1016/S0266-3538(03)00066-6
Fukahori, 2007, Generalized concept of the reinforcement of elastomers. part 1: carbon black reinforcement of rubbers, Rubber Chem. Technol., 80, 701, 10.5254/1.3548189
Goudarzi, 2015, Filled elastomers: A theory of filler reinforcement based on hydrodynamic and interphasial effects, J. Mech. Phys. Solids, 80, 37, 10.1016/j.jmps.2015.04.012
Govindjee, 1991, A micromechanically based continuum damage model for carbon black-filled rubbers incorporating mullins effect, J. Mech. Phys. Solids, 39, 87, 10.1016/0022-5096(91)90032-J
Gusev, 1997, Representative volume element size for elastic composites: a numerical study, J. Mech. Phys. Solids, 45, 1449, 10.1016/S0022-5096(97)00016-1
Guth, 1938, On the hydrodynamical theory of the viscosity of suspensions, Phys. Rev., 53, 322
Heinrich, 2002, Reinforcement of elastomers, Curr. Opin. Solid State Mater. Sci., 6, 195, 10.1016/S1359-0286(02)00030-X
Hill, 1972, On constitutive macro-variables for heterogeneous solids at finite strain, Proc. R. Soc. Lond. A, 326, 131, 10.1098/rspa.1972.0001
Johnston, 2014, Mechanical characterization of bulk sylgard 184 for microfluidics and microengineering, J. Micromech. Microeng., 24, 035017, 10.1088/0960-1317/24/3/035017
Leblanc, 2010
Lefèvre, 2017, A general result for the magnetoelastic response of isotropic suspensions of iron and ferrofluid particles in rubber, with applications to spherical and cylindrical specimens, J. Mech. Phys. Solids, 107, 343, 10.1016/j.jmps.2017.06.017
Lefévre, 2017, Nonlinear electroelastic deformations of dielectric elastomer composites: I — ideal elastic dielectrics, J. Mech. Phys. Solids, 99, 409, 10.1016/j.jmps.2016.07.004
Lefévre, 2017, Nonlinear electroelastic deformations of dielectric elastomer composites: II — non-gaussian elastic dielectrics, J. Mech. Phys. Solids, 99, 438, 10.1016/j.jmps.2016.07.005
Lopez-Pamies, 2010, A new I1-based model for rubber elastic materials, Comptes Rendus Mécanique, 338, 3, 10.1016/j.crme.2009.12.007
Lopez-Pamies, 2010, An exact result for the macroscopic response of particle-reinforced neohookean solids, J. Appl. Mech., 77, 021016, 10.1115/1.3197444
Lopez-Pamies, 2013, The nonlinear elastic response of suspensions of rigid inclusions in rubber: I — An exact result for dilute suspensions, J. Mech. Phys. Solids, 61, 1, 10.1016/j.jmps.2012.08.010
Lopez-Pamies, 2013, The nonlinear elastic response of suspensions of rigid inclusions in rubber: II — A simple explicit approximation for finite concentration suspensions, J. Mech. Phys. Solids, 61, 19, 10.1016/j.jmps.2012.08.013
Lopez-Pamies, 2006, On the overall behavior, microstructure evolution, and macroscopic stability in reinforced rubbers at large deformations: I — Theory, J. Mech. Phys. Solids, 54, 807, 10.1016/j.jmps.2005.10.006
Mark, 2007
Meddeb, 2019, Extreme enhancement of the nonlinear elastic response of elastomer nanoparticulate composites via interphases, Compos. Part B, 156, 166, 10.1016/j.compositesb.2018.08.064
Meinecke, 1988, Effect of carbon-black on the mechanical properties of elastomers, Rubber Chem. Technol., 61, 534, 10.5254/1.3536199
Michel, 1999, Effective properties of composite materials with periodic microstructure: a computational approach, Comput. Methods Appl. Mech. Eng., 172, 109, 10.1016/S0045-7825(98)00227-8
Mooney, 1940, A theory of large elastic deformation, J. Appl. Phys., 11, 582, 10.1063/1.1712836
Müller, 1987, Homogenization of nonconvex integral functionals and cellular elastic materials, Arch. Rat. Mech. Anal., 99, 189, 10.1007/BF00284506
Mullins, 1965, Stress softening in rubber vulcanizates. Part I. use of a strain amplification factor to describe the elastic behavior of filler-reinforced vulcanized rubber, J. Appl. Polym. Sci., 9, 2993, 10.1002/app.1965.070090906
Ogden, 1972, Large deformation isotropic elasticity — on the correlation of theory and experiment for incompressible rubberlike solids, Proc. R. Soc. Lond. A, 326, 565, 10.1098/rspa.1972.0026
Ogden, 2004, Fitting hyperelastic models to experimental data, Comput. Mech., 34, 484, 10.1007/s00466-004-0593-y
Poulain, 2017, Damage in elastomers: nucleation and growth of cavities, micro-cracks, and macro-cracks, Int. J. Fract., 205, 1, 10.1007/s10704-016-0176-9
Poulain, 2018, Damage in elastomers: healing of internally nucleated cavities and micro-cracks, Soft Matter, 14, 4633, 10.1039/C8SM00238J
Qu, 2011, Nanoscale visualization and multiscale mechanical implications of bound rubber interphases in rubber carbon black nanocomposites, Soft Matter, 7, 1066, 10.1039/C0SM00645A
Roscoe, 1973, Isotropic composites with elastic or viscoelastic phases: general bounds for the moduli and solutions for special geometries, Rheol. Acta, 12, 404, 10.1007/BF01502992
Schöbel, 1997, Netgen an advancing front 2d/3d-mesh generator based on abstract rules, Comput. Visual. Sci., 1, 41, 10.1007/s007910050004
Segurado, 2002, A numerical approximation to the elastic properties of sphere-reinforced composites, J. Mech. Phys. Solids, 50, 2107, 10.1016/S0022-5096(02)00021-2
Smallwood, 1944, Limiting law of the reinforcement of rubber, J. Appl. Phys., 15, 758, 10.1063/1.1707385
Song, 2016, Concepts and conflicts in nanoparticles reinforcement to polymers beyond hydrodynamics, Prog. Mater. Sci., 84, 1, 10.1016/j.pmatsci.2016.09.002
Spinelli, 2015, Dielectric elastomer composites: a general closed-form solution in the small-deformation limit, J. Mech. Phys. Solids, 83, 263, 10.1016/j.jmps.2015.06.009
Tadiello, 2015, The filler-rubber interface in styrene butadiene nanocomposites with anisotropic silica particles: morphology and dynamic properties, Soft Matter, 11, 4022, 10.1039/C5SM00536A
Valentin, 2008, Uncertainties in the determination of cross-link density by equilibrium swelling experiments in natural rubber, Macromolecules, 41, 10.1021/ma8005087
Wagner, 1976, Reinforcing silicas and silicates, Rubb. Chem. Technol., 49, 703, 10.5254/1.3534979
Wiegand, 1937, The carbon reinforcement of rubber, Rubb. Chem. Tech., 10, 395, 10.5254/1.3538994
Zou, 2008, Polymer/silica nanocomposites: preparation, characterization, properties, and applications, Chem. Rev., 108, 3893, 10.1021/cr068035q