The non-abelian tensor square of residually finite groups

Springer Science and Business Media LLC - Tập 183 - Trang 61-69 - 2016
R. Bastos1, N. R. Rocco1
1Departamento de Matemática, Universidade de Brasília, Brasilia, Brazil

Tóm tắt

Let m, n be positive integers and p a prime. We denote by $$\nu (G)$$ an extension of the non-abelian tensor square $$G \otimes G$$ by $$G \times G$$ . We prove that if G is a residually finite group satisfying some non-trivial identity $$f \equiv ~1$$ and for every $$x,y \in G$$ there exists a p-power $$q=q(x,y)$$ such that $$[x,y^{\varphi }]^q = 1$$ , then the derived subgroup $$\nu (G)'$$ is locally finite (Theorem A). Moreover, we show that if G is a residually finite group in which for every $$x,y \in G$$ there exists a p-power $$q=q(x,y)$$ dividing $$p^m$$ such that $$[x,y^{\varphi }]^q$$ is left n-Engel, then the non-abelian tensor square $$G \otimes G$$ is locally virtually nilpotent (Theorem B).

Tài liệu tham khảo

Bastos, R.: On residually finite groups with Engel-like conditions. Comm. Alg. 44, 4177–4184 (2016) Bastos, R., Shumyatsky, P.: On profinite groups with Engel-like conditions. J. Algebra 427, 215–225 (2015) Bastos, R., Rocco, N.R.: Non-abelian tensor square of finite-by-nilpotent groups, preprint available at arXiv:1509.05114 [math.GR] (2015) Bastos, R., Shumyatsky, P., Tortora, A., Tota, M.: On groups admitting a word whose values are Engel. Int. J. Algebra Comput. 23(1), 81–89 (2013) Brown, R., Loday, J.L.: Excision homotopique en basse dimension. CR. Acad. Sci. Paris Sr. I 298(15), 353–356 (1984) Brown, R., Loday, J.-L.: Van Kampen theorems for diagrams of spaces. Topology 26, 311–335 (1987) Deryabina, G.S., Kozevnikov, P.A.: The derived subgroup of a group with commutators of bounded order can be non-periodic. Commun. Algebra 27, 4525–4530 (1999) Lazard, M.: Sur les groupes nilpotents et les anneaux de Lie. Ann. Sci. École Norm. Sup. 71, 101–190 (1954) Lazard, M.: Groupes analytiques \(p\)-adiques. IHES Publ. Math. 26, 389–603 (1965) Longobardi, P., Maj, M., Smith, H.: A note on locally graded groups. Rend. Sem. Mat. Univ. Padova 94, 275–277 (1995) Moravec, P.: The exponents of nonabelian tensor products of groups. J. Pure Appl. Algebra 212, 1840–1848 (2008) Nakaoka, I.N., Rocco, N.R.: A survey of non-abelian tensor products of groups and related constructions. Bol. Soc. Paran. Mat. 30, 77–89 (2012) Robinson, D.J.S.: A course in the theory of groups, 2nd edn. Springer, New York (1996) Rocco, N.R.: On a construction related to the non-abelian tensor square of a group. Bol. Soc. Brasil Mat. 22, 63–79 (1991) Rocco, N.R.: A presentation for a crossed embedding of finite solvable groups. Commun. Algebra 22, 1975–1998 (1994) Shumyatsky, P.: Groups with commutators of bounded order. Proc. Am. Math. Soc. 127, 2583–2586 (1999) Shumyatsky, P.: On residually finite groups in which commutators are Engel. Commun. Algebra 27, 1937–1940 (1999) Shumyatsky, P.: Applications of Lie ring methods to group theory, in Nonassociative algebra and its applications. In: Costa, R., Grishkov, A., Guzzo Jr H., Peresi, L.A. (eds.) Lecture Notes in Pure and Appl. Math., vol. 211 (Dekker, New York, 2000), pp. 373–395 (2000) Shumyatsky, P.: Elements of prime power order in residually finite groups. Int. J. Algebra Comput. 15, 571–576 (2005) Shumyatsky, P., Tortora, A., Tota, M.: On locally graded groups with a word whose values are Engel. Proc. Edinb. Math. Soc. (Series 2) 59, 533–539 (2016) Tits, J.: Free subgroups in linear groups. J. Algebra 20, 250–270 (1972) Wilson, J.S.: Two-generator conditions for residually finite groups. Bull. Lond. Math. Soc. 23, 239–248 (1991) Wilson, J.S., Zelmanov, E.I.: Identities for Lie algebras of pro-\(p\) groups. J. Pure Appl. Algebra 81, 103–109 (1992) Zelmanov, E.I.: On the restricted Burnside problem. In: Proceedings of the International Congress of Mathematicians. pp. 395–402 (1990) Zel’manov, E.: The solution of the restricted Burnside problem for groups of odd exponent. Math. USSR Izv. 36, 41–60 (1991) Zel’manov, E.: The solution of the restricted Burnside problem for 2-groups. Math. Sb. 182, 568–592 (1991)