The new truncated somatostatin receptor variant sst5TMD4 is associated to poor prognosis in breast cancer and increases malignancy in MCF-7 cells
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ben-Shlomo A, Melmed S . (2010). Pituitary somatostatin receptor signaling. Trends Endocrinol Metab 21: 123–133.
Benali N, Cordelier P, Calise D, Pages P, Rochaix P, Nagy A et al. (2000). Inhibition of growth and metastatic progression of pancreatic carcinoma in hamster after somatostatin receptor subtype 2 (sst2) gene expression and administration of cytotoxic somatostatin analog AN-238. Proc Nat Acad Sci USA 97: 9180–9185.
Cordoba-Chacon J, Gahete MD, Duran-Prado M, Pozo-Salas AI, Malagon MM, Gracia-Navarro F et al. (2010). Identification and characterization of new functional truncated variants of somatostatin receptor subtype 5 in rodents. Cell Mol Life Sci 67: 1147–1163.
Charland S, Boucher MJ, Houde M, Rivard N . (2001). Somatostatin inhibits Akt phosphorylation and cell cycle entry, but not p42/p44 mitogen-activated protein (MAP) kinase activation in normal and tumoral pancreatic acinar cells. Endocrinology 142: 121–128.
Donovan JC, Milic A, Slingerland JM . (2001). Constitutive MEK/MAPK activation leads to p27(Kip1) deregulation and antiestrogen resistance in human breast cancer cells. J Biol Chem 276: 40888–40895.
Duran-Prado M, Bucharles C, Gonzalez BJ, Vazquez-Martinez R, Martinez-Fuentes AJ, Garcia-Navarro S et al. (2007). Porcine somatostatin receptor 2 displays typical pharmacological sst2 features but unique dynamics of homodimerization and internalization. Endocrinology 148: 411–421.
Duran-Prado M, Gahete MD, Martinez-Fuentes AJ, Luque RM, Quintero A, Webb SM et al. (2009). Identification and characterization of two novel truncated but functional isoforms of the somatostatin receptor subtype 5 differentially present in pituitary tumors. J Clin Endocrinol Metab 94: 2634–2643.
Durán-Prado M, Saveanu A, Luque RM, Gahete MD, Gracia-Navarro F, Jaquet P et al. (2010). A potential inhibitory role for the new truncated variant of somatostatin receptor 5 (sst5TMD4) in pituitary adenomas poorly responsive to somatostatin analogs. J Clin Endocrinol Metab 95: 2497–2502.
Eralp Y, Derin D, Ozluk Y, Yavuz E, Guney N, Saip P et al. (2008). MAPK overexpression is associated with anthracycline resistance and increased risk for recurrence in patients with triple-negative breast cancer. Ann Oncol 19: 669–674.
Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM . (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127: 2893–2917.
He Y, Yuan XM, Lei P, Wu S, Xing W, Lan XL et al. (2009). The antiproliferative effects of somatostatin receptor subtype 2 in breast cancer cells. Acta Pharmacol Sin 30: 1053–1059.
Hubina E, Nanzer AM, Hanson MR, Ciccarelli E, Losa M, Gaia D et al. (2006). Somatostatin analogues stimulate p27 expression and inhibit the MAP kinase pathway in pituitary tumours. Eur J Endocrinol 155: 371–379.
Kahan Z, Nagy A, Schally AV, Hebert F, Sun B, Groot K et al. (1999). Inhibition of growth of MX-1, MCF-7-MIII and MDA-MB-231 human breast cancer xenografts after administration of a targeted cytotoxic analog of somatostatin, AN-238. Int J Cancer 82: 592–598.
Keri G, Erchegyi J, Horvath A, Mezo I, Idei M, Vantus T et al. (1996). A tumor-selective somatostatin analog (TT-232) with strong in vitro and in vivo antitumor activity. Proc Nat Acad Sci USA 93: 12513–12518.
Lee JF, Ozaki H, Zhan X, Wang E, Hla T, Lee MJ . (2006). Sphingosine-1-phosphate signaling regulates lamellipodia localization of cortactin complexes in endothelial cells. Histochem Cell Biol 126: 297–304.
Leu FP, Nandi M, Niu C . (2008). The effect of transforming growth factor beta on human neuroendocrine tumor BON cell proliferation and differentiation is mediated through somatostatin signaling. Mol Cancer Res 6: 1029–1042.
Liu W, Bagaitkar J, Watabe K . (2007). Roles of AKT signal in breast cancer. Front Biosci 12: 4011–4019.
Moller LN, Stidsen CE, Hartmann B, Holst JJ . (2003). Somatostatin receptors. Biochim Biophys Acta 1616: 1–84.
Moreno-Bueno G, Salvador F, Martin A, Floristan A, Cuevas EP, Santos V et al. (2011). Lysyl oxidase-like 2 (LOXL2), a new regulator of cell polarity required for metastatic dissemination of basal-like breast carcinomas. EMBO Mol Med 3: 528–544.
Nakanishi O, Suetsugu S, Yamazaki D, Takenawa T . (2007). Effect of WAVE2 phosphorylation on activation of the Arp2/3 complex. J Biochem 141: 319–325.
Orlando C, Raggi CC, Bianchi S, Distante V, Simi L, Vezzosi V et al. (2004). Measurement of somatostatin receptor subtype 2 mRNA in breast cancer and corresponding normal tissue. Endocr Relat Cancer 11: 323–332.
Perez-Tenorio G, Stal O . (2002). Activation of AKT/PKB in breast cancer predicts a worse outcome among endocrine treated patients. Br J Cancer 86: 540–545.
Pola S, Cattaneo MG, Vicentini LM . (2003). Anti-migratory and anti-invasive effect of somatostatin in human neuroblastoma cells: involvement of Rac and MAP kinase activity. J Biol Chem 278: 40601–40606.
Prevost G, Provost P, Salle V, Lanson M, Thomas F . (1993). A cross-linking assay allows the detection of receptors for the somatostatin analogue, lanreotide in human breast tumours. Eur J Cancer 29A: 1589–1592.
Rinke A, Muller HH, Schade-Brittinger C, Klose KJ, Barth P, Wied M et al. (2009). Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol 27: 4656–4663.
Rommel C, Clarke BA, Zimmermann S, Nunez L, Rossman R, Reid K et al. (1999). Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science 286: 1738–1741.
Santen RJ, Song RX, McPherson R, Kumar R, Adam L, Jeng MH et al. (2002). The role of mitogen-activated protein (MAP) kinase in breast cancer. J Steroid Biochem Mol Biol 80: 239–256.
Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J . (2008). Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 68: 989–997.
Sawai H, Okada Y, Funahashi H, Matsuo Y, Takahashi H, Takeyama H et al. (2005). Activation of focal adhesion kinase enhances the adhesion and invasion of pancreatic cancer cells via extracellular signal-regulated kinase-1/2 signaling pathway activation. Mol Cancer 4: 37.
Schulz S, Schulz S, Schmitt J, Wiborny D, Schmidt H, Olbricht S et al. (1998). Immunocytochemical detection of somatostatin receptors sst1, sst2A, sst2B, and sst3 in paraffin-embedded breast cancer tissue using subtype-specific antibodies. Clin Cancer Res 4: 2047–2052.
Setyono-Han B, Henkelman MS, Foekens JA, Klijn GM . (1987). Direct inhibitory effects of somatostatin (analogues) on the growth of human breast cancer cells. Cancer Res 47: 1566–1570.
Sun LC, Luo J, Mackey LV, Fuselier JA, Coy DH . (2007). A conjugate of camptothecin and a somatostatin analog against prostate cancer cell invasion via a possible signaling pathway involving PI3K/Akt, alphaVbeta3/alphaVbeta5 and MMP-2/-9. Cancer Lett 246: 157–166.
Umemura S, Yoshida S, Ohta Y, Naito K, Osamura RY, Tokuda Y . (2007). Increased phosphorylation of Akt in triple-negative breast cancers. Cancer Sci 98: 1889–1892.
van Eijck CH, Krenning EP, Bootsma A, Oei HY, van Pel R, Lindemans J et al. (1994). Somatostatin-receptor scintigraphy in primary breast cancer. Lancet 343: 640–643.
Vivanco I, Sawyers CL . (2002). The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2: 489–501.
Wang W, Goswami S, Sahai E, Wyckoff JB, Segall JE, Condeelis JS . (2005). Tumor cells caught in the act of invading: their strategy for enhanced cell motility. Trends Cell Biol 15: 138–145.
Watt HL, Kharmate G, Kumar U . (2008). Biology of somatostatin in breast cancer. Mol Cell Endocrinol 286: 251–261.
Xu Y, Song J, Berelowitz M, Bruno JF . (1996). Estrogen regulates somatostatin receptor subtype 2 messenger ribonucleic acid expression in human breast cancer cells. Endocrinology 137: 5634–5640.
Yamaguchi H, Lorenz M, Kempiak S, Sarmiento C, Coniglio S, Symons M et al. (2005). Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J Cell Biol 168: 441–452.