The neuroprotective potential of flavonoids: a multiplicity of effects
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aasmundstad TA, Morland J, Paulsen RE (1995) Distribution of morphine 6-glucuronide and morphine across the blood-brain barrier in awake, freely moving rats investigated by in vivo microdialysis sampling. J Pharmacol Exp Ther 275:435–441
Abbott NJ (2002) Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat 200:629–638
Abd El Mohsen MM, Kuhnle G, Rechner AR et al (2002) Uptake and metabolism of epicatechin and its access to the brain after oral ingestion. Free Radic Biol Med 33:1693–1702
Bal-Price A, Matthias A, Brown GC (2002) Stimulation of the NADPH oxidase in activated rat microglia removes nitric oxide but induces peroxynitrite production. J Neurochem 80:73–80
Barros D, Amaral OB, Izquierdo I et al (2006) Behavioral and genoprotective effects of Vaccinium berries intake in mice. Pharmacol Biochem Behav 84:229–234
Barzilai A, Melamed E (2003) Molecular mechanisms of selective dopaminergic neuronal death in Parkinson’s disease. Trends Mol Med 9:126–132
Bastianetto S, Zheng WH, Quirion R (2000) The Ginkgo biloba extract (EGb 761) protects and rescues hippocampal cells against nitric oxide-induced toxicity: involvement of its flavonoid constituents and protein kinase C. J Neurochem 74:2268–2277
Bhat NR, Feinstein DL, Shen Q et al (2002) p38 MAPK-mediated transcriptional activation of inducible nitric-oxide synthase in glial cells. Roles of nuclear factors, nuclear factor kappa B, cAMP response element-binding protein, CCAAT/enhancer-binding protein-beta, and activating transcription factor-2. J Biol Chem 277:29584–29592
Bhat NR, Zhang P, Lee JC et al (1998) Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-alpha gene expression in endotoxin-stimulated primary glial cultures. J Neurosci 18:1633–1641
Birge SJ (1996) Is there a role for estrogen replacement therapy in the prevention and treatment of dementia? J Am Geriatr Soc 44:865–870
Breteler MM (2000) Vascular risk factors for Alzheimer’s disease: an epidemiologic perspective. Neurobiol Aging 21:153–160
Casadesus G, Shukitt-Hale B, Stellwagen HM et al (2004) Modulation of hippocampal plasticity and cognitive behavior by short-term blueberry supplementation in aged rats. Nutr Neurosci 7:309–316
Casini ML, Marelli G, Papaleo E et al (2006) Psychological assessment of the effects of treatment with phytoestrogens on postmenopausal women: a randomized, double-blind, crossover, placebo-controlled study. Fertil Steril 85:972–978
Casper D, Yaparpalvi U, Rempel N et al (2000) Ibuprofen protects dopaminergic neurons against glutamate toxicity in vitro. Neurosci Lett 289:201–204
Chan YC, Hosoda K, Tsai CJ et al (2006) Favorable effects of tea on reducing the cognitive deficits and brain morphological changes in senescence-accelerated mice. J Nutr Sci Vitaminol (Tokyo) 52:266–273
Checkoway H, Powers K, Smith-Weller T et al (2002) Parkinson’s disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. Am J Epidemiol 155:732–738
Chen JC, Ho FM, Pei-Dawn LC et al (2005) Inhibition of iNOS gene expression by quercetin is mediated by the inhibition of IkappaB kinase, nuclear factor-kappa B and STAT1, and depends on heme oxygenase-1 induction in mouse BV-2 microglia. Eur J Pharmacol 521:9–20
Chopin P, Briley M (1992) Effects of four non-cholinergic cognitive enhancers in comparinson with tacrine and galanthamine on scopolamine-induced amnesia in rats. Psychopharmacology 106:26–30
Clostre F (1999) Gingko Biloba extract (EGb 761). State of knowledgement in the dawn of the year 2000. Ann Pharm Fr 57:IS8–IS88
Cohen-Salmon C, Venault P, Martin B et al (1997) Effects of Ginkgo biloba extract (EGb 761) on learning and possible actions on aging. J Physiol Paris 91:291–300
Commenges D, Scotet V, Renaud S et al (2000) Intake of flavonoids and risk of dementia. Eur J Epidemiol 16:357–363
da Silva EL, Piskula MK, Yamamoto N et al (1998) Quercetin metabolites inhibit copper ion-induced lipid peroxidation in rat plasma. FEBS Lett 430:405–408
Dai Q, Borenstein AR, Wu Y et al (2006) Fruit and vegetable juices and Alzheimer’s disease: the Kame Project. Am J Med 119:751–759
Datla KP, Christidou M, Widmer WW et al (2001) Tissue distribution and neuroprotective effects of citrus flavonoid tangeretin in a rat model of Parkinson’s disease. Neuroreport 12:3871–3875
Diamond BJ, Shiflett SC, Feiwel N et al (2000) Ginkgo biloba extract: mechanisms and clinical indications. Arch Phys Med Rehabil 81:668–678
El Mohsen MA, Marks J, Kuhnle G et al (2006) Absorption, tissue distribution and excretion of pelargonidin and its metabolites following oral administration to rats. Br J Nutr 95:51–58
File SE, Hartley DE, Elsabagh S et al (2005) Cognitive improvement after 6 weeks of soy supplements in postmenopausal women is limited to frontal lobe function. Menopause 12:193–201
File SE, Jarrett N, Fluck E et al (2001) Eating soya improves human memory. Psychopharmacology (Berl) 157:430–436
Fisher ND, Sorond FA, Hollenberg NK (2006) Cocoa flavanols and brain perfusion. J Cardiovasc Pharmacol 47(Suppl 2):S210–S214
Fournier LR, Ryan Borchers TA, Robison LM et al (2007) The effects of soy milk and isoflavone supplements on cognitive performance in healthy, postmenopausal women. J Nutr Health Aging 11:155–164
Francis ST, Head K, Morris PG et al (2006) The effect of flavanol-rich cocoa on the fMRI response to a cognitive task in healthy young people. J Cardiovasc Pharmacol 47(Suppl 2):S215–S220
Goyarzu P, Malin DH, Lau FC et al (2004) Blueberry supplemented diet: effects on object recognition memory and nuclear factor-kappa B levels in aged rats. Nutr Neurosci 7:75–83
Harris KM, Kater SB (1994) Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu Rev Neurosci 17:341–371
Hartman RE, Shah A, Fagan AM et al (2006) Pomegranate juice decreases amyloid load and improves behavior in a mouse model of Alzheimer’s disease. Neurobiol Dis 24:506–515
Hastings TG (1995) Enzymatic oxidation of dopamine: the role of prostaglandin H synthase. J Neurochem 64:919–924
Henderson VW (2006) Estrogen-containing hormone therapy and Alzheimer’s disease risk: understanding discrepant inferences from observational and experimental research. Neuroscience 138:1031–1039
Hirsch EC, Hunot S, Hartmann A (2005) Neuroinflammatory processes in Parkinson’s disease. Parkinsonism Relat Disord 11(Suppl 1):S9–S15
Hoffman JR, Donato A, Robbins SJ (2004) Ginkgo biloba promotes short-term retention of spatial memory in rats. Pharmacol Biochem Behav 77:533–539
Inanami O, Watanabe Y, Syuto B et al (1998) Oral administration of (-)catechin protects against ischemia-reperfusion-induced neuronal death in the gerbil. Free Radic Res 29:359–365
Ishikawa Y, Kitamura M (2000) Anti-apoptotic effect of quercetin: intervention in the JNK- and ERK-mediated apoptotic pathways. Kidney Int 58:1078–1087
Itil TM, Eralp E, Ahmed I et al (1998) The pharmacological effects of Gingko Biloba, a plant extract, on the brain of dementia patients in comparinson with tacrine. Psychopharmacology 34:391–396
Joseph JA, Shukitt-Hale B, Denisova NA et al (1999) Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. J Neurosci 19:8114–8121
Joseph JA, Shukitt-Hale B, Denisova NA et al (1998) Long-term dietary strawberry, spinach, or vitamin E supplementation retards the onset of age-related neuronal signal-transduction and cognitive behavioral deficits. J Neurosci 18:8047–8055
Kalt W, Blumberg JB, McDonald JE et al (2008) Identification of anthocyanins in the liver, eye, and brain of blueberry-fed pigs. J Agric Food Chem 56:705–712
Kim H, Kim YS, Kim SY et al (2001) The plant flavonoid wogonin suppresses death of activated C6 rat glial cells by inhibiting nitric oxide production. Neurosci Lett 309:67–71
Kobuchi H, Roy S, Sen CK et al (1999) Quercetin inhibits inducible ICAM-1 expression in human endothelial cells through the JNK pathway. Am J Physiol 277:C403–C411
Kozuka N, Itofusa R, Kudo Y et al (2005) Lipopolysaccharide and proinflammatory cytokines require different astrocyte states to induce nitric oxide production. J Neurosci Res 82:717–728
Kritz-Silverstein D, Von MD, Barrett-Connor E et al (2003) Isoflavones and cognitive function in older women: the SOy and Postmenopausal Health In Aging (SOPHIA) Study. Menopause 10:196–202
Kroemer HK, Klotz U (1992) Glucuronidation of drugs. A re-evaluation of the pharmacological significance of the conjugates and modulating factors. Clin Pharmacokinet 23:292–310
Lau FC, Bielinski DF, Joseph JA (2007) Inhibitory effects of blueberry extract on the production of inflammatory mediators in lipopolysaccharide-activated BV2 microglia. J Neurosci Res 85:1010–1017
Lau FC, Shukitt-Hale B, Joseph JA (2007) Nutritional intervention in brain aging: reducing the effects of inflammation and oxidative stress. Subcell Biochem 42:299–318
Lee H, Kim YO, Kim H et al (2003) Flavonoid wogonin from medicinal herb is neuroprotective by inhibiting inflammatory activation of microglia. FASEB J 17:1943–1944
Lee S, Suh S, Kim S (2000) Protective effects of the green tea polyphenol (-)-epigallocatechin gallate against hippocampal neuronal damage after transient global ischemia in gerbils. Neurosci Lett 287:191–194
Lee YB, Lee HJ, Won MH et al (2004) Soy isoflavones improve spatial delayed matching-to-place performance and reduce cholinergic neuron loss in elderly male rats. J Nutr 134:1827–1831
Letenneur L, Proust-Lima C, Le GA et al (2007) Flavonoid intake and cognitive decline over a 10-year period. Am J Epidemiol 165:1364–1371
Levites Y, Weinreb O, Maor G et al (2001) Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem 78:1073–1082
Levites Y, Youdim MB, Maor G et al (2002) Attenuation of 6-hydroxydopamine (6-OHDA)-induced nuclear factor-kappaB (NF-kappaB) activation and cell death by tea extracts in neuronal cultures. Biochem Pharmacol 63:21–29
Li R, Huang YG, Fang D et al (2004) (-)-Epigallocatechin gallate inhibits lipopolysaccharide-induced microglial activation and protects against inflammation-mediated dopaminergic neuronal injury. J Neurosci Res 78:723–731
Lin JH, Yamazaki M (2003) Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin Pharmacokinet 42:59–98
Lund TD, West TW, Tian LY et al (2001) Visual spatial memory is enhanced in female rats (but inhibited in males) by dietary soy phytoestrogens. BMC Neurosci 2:20
Luo Y, Smith JV, Paramasivam V et al (2002) Inhibition of amyloid-beta aggregation and caspase-3 activation by the Ginkgo biloba extract EGb761. Proc Natl Acad Sci USA 99:12197–12202
Maher P, Akaishi T, Abe K (2006) Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. Proc Natl Acad Sci USA 103:16568–16573
Manach C, Scalbert A, Morand C et al (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747
Mandel S, Youdim MB (2004) Catechin polyphenols: neurodegeneration and neuroprotection in neurodegenerative diseases. Free Radic Biol Med 37:304–317
Marcus JS, Karackattu SL, Fleegal MA et al (2003) Cytokine-stimulated inducible nitric oxide synthase expression in astroglia: role of Erk mitogen-activated protein kinase and NF-kappaB. Glia 41:152–160
Miyake Y, Shimoi K, Kumazawa S et al (2000) Identification and antioxidant activity of flavonoid metabolites in plasma and urine of eriocitrin-treated rats. J Agric Food Chem 48:3217–3224
Nagahama Y, Nabatame H, Okina T et al (2003) Cerebral correlates of the progression rate of the cognitive decline in probable Alzheimer’s disease. Eur Neurol 50:1–9
Oyama Y, Chikahisa L, Ueha T et al (1996) Ginkgo biloba extract protects brain neurons against oxidative stress induced by hydrogen peroxide. Brain Res 712:349–352
Oyama Y, Fuchs PA, Katayama N et al (1994) Myricetin and quercetin, the flavonoid constituents of Ginkgo biloba extract, greatly reduce oxidative metabolism in both resting and Ca(2+)-loaded brain neurons. Brain Res 635:125–129
Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425:479–494
Pan Y, Anthony M, Clarkson TB (1999) Effect of estradiol and soy phytoestrogens on choline acetyltransferase and nerve growth factor mRNAs in the frontal cortex and hippocampus of female rats. Proc Soc Exp Biol Med 221:118–125
Pan Y, Anthony M, Clarkson TB (1999) Evidence for up-regulation of brain-derived neurotrophic factor mRNA by soy phytoestrogens in the frontal cortex of retired breeder female rats. Neurosci Lett 261:17–20
Pan Y, Anthony M, Watson S et al (2000) Soy phytoestrogens improve radial arm maze performance in ovariectomized retired breeder rats and do not attenuate benefits of 17beta-estradiol treatment. Menopause 7:230–235
Passamonti S, Vrhovsek U, Vanzo A et al (2005) Fast access of some grape pigments to the brain. J Agric Food Chem 53:7029–7034
Peng HW, Cheng FC, Huang YT et al (1998) Determination of naringenin and its glucuronide conjugate in rat plasma and brain tissue by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 714:369–374
Pu F, Mishima K, Irie K et al (2007) Neuroprotective effects of quercetin and rutin on spatial memory impairment in an 8-arm radial maze task and neuronal death induced by repeated cerebral ischemia in rats. J Pharmacol Sci 104:329–334
Ramassamy C, Clostre F, Christen Y et al (1990) Prevention by a Ginkgo Biloba extract (GBE 761) of the dopaminergic neurotoxicity of MPTP. J Pharm Pharmacol 42:785–789
Ramirez MR, Izquierdo I, s Raseira M et al (2005) Effect of lyophilised Vaccinium berries on memory, anxiety and locomotion in adult rats. Pharmacol Res 52:457–462
Reznichenko L, Amit T, Youdim MB et al (2005) Green tea polyphenol (-)-epigallocatechin-3-gallate induces neurorescue of long-term serum-deprived PC12 cells and promotes neurite outgrowth. J Neurochem 93:1157–1167
Rice-Evans C (1995) Plant polyphenols: free radical scavengers or chain-breaking antioxidants? Biochem Soc Symp 61:103–116
Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956
Ruitenberg A, den Heijer T, Bakker SL et al (2005) Cerebral hypoperfusion and clinical onset of dementia: the Rotterdam Study. Ann Neurol 57:789–794
Scheline RR (1999) Metabolism of Oxygen Heterocyclic Compounds. CRC Handbook of mammalian metabolism of plant compounds. CRC Press Inc., Boca Ranton, pp 243–95
Schroeter H, Bahia P, Spencer JP et al (2007) (-)Epicatechin stimulates ERK-dependent cyclic AMP response element activity and up-regulates GluR2 in cortical neurons. J Neurochem 101:1596–1606
Schroeter H, Heiss C, Balzer J et al (2006) (-)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc Natl Acad Sci USA 103:1024–1029
Schroeter H, Spencer JP, Rice-Evans C et al (2001) Flavonoids protect neurons from oxidized low-density-lipoprotein-induced apoptosis involving c-Jun N-terminal kinase (JNK), c-Jun and caspase-3. Biochem J 358:547–557
Schroeter H, Williams RJ, Matin R et al (2000) Phenolic antioxidants attenuate neuronal cell death following uptake of oxidized low-density lipoprotein. Free Radic Biol Med 29:1222–1233
Shif O, Gillette K, Damkaoutis CM et al (2006) Effects of Ginkgo biloba administered after spatial learning on water maze and radial arm maze performance in young adult rats. Pharmacol Biochem Behav 84:17–25
Shirai M, Moon JH, Tsushida T et al (2001) Inhibitory effect of a quercetin metabolite, quercetin 3-O-beta-D-glucuronide, on lipid peroxidation in liposomal membranes. J Agric Food Chem 49:5602–5608
Shukitt-Hale B, Carey A, Simon L et al (2006) Effects of Concord grape juice on cognitive and motor deficits in aging. Nutrition 22:295–302
Shukitt-Hale B, Smith DE, Meydani M et al (1999) The effects of dietary antioxidants on psychomotor performance in aged mice. Exp Gerontol 34:797–808
Smith JV, Burdick AJ, Golik P et al (2002) Anti-apoptotic properties of Ginkgo biloba extract EGb 761 in differentiated PC12 cells. Cell Mol Biol (Noisy -le-grand) 48:699–707
Spencer JPE (2007) The interactions of flavonoids within neuronal signalling pathways. Gen Nutr 2:257–273
Spencer JPE, Chowrimootoo G, Choudhury R et al (1999) The small intestine can both absorb and glucuronidate luminal flavonoids. FEBS Lett 458:224–230
Spencer JPE, Kuhnle GG, Williams RJ et al (2003) Intracellular metabolism and bioactivity of quercetin and its in vivo metabolites. Biochem J 372:173–181
Spencer JPE, Rice-Evans C, Williams RJ (2003) Modulation of pro-survival Akt/protein kinase B and ERK1/2 signaling cascades by quercetin and its in vivo metabolites underlie their action on neuronal viability. J Biol Chem 278:34783–34793
Spencer JPE, Schroeter H, Crossthwaithe AJ et al (2001) Contrasting influences of glucuronidation and O-methylation of epicatechin on hydrogen peroxide-induced cell death in neurons and fibroblasts. Free Radic Biol Med 31:1139–1146
Spencer JPE, Schroeter H, Rechner AR et al (2001) Bioavailability of flavan-3-ols and procyanidins: gastrointestinal tract influences and their relevance to bioactive forms in vivo. Antioxid Redox Signal 3:1023–1039
Spencer JPE (2003) Metabolism of tea flavonoids in the gastrointestinal tract. J Nutr 133:3255S–3261S
Spencer JPE (2008) Food for thought: the role of dietary flavonoids in enhancing human memory, learning and neuro-cognitive performance. Proc Nutr Soc 67:238–252
Spencer JPE, Abd El Mohsen MM, Minihane AM et al (2007) Biomarkers of the intake of dietary polyphenols: strengths, limitations and application in nutrition research. Br J Nutr:1–11
Spencer JPE, Jenner P, Daniel SE et al (1998) Conjugates of catecholamines with cysteine and GSH in Parkinson’s disease: possible mechanisms of formation involving reactive oxygen species. J Neurochem 71:2112–2122
Spencer JPE, Jenner P, Halliwell B (1995) Superoxide-dependent depletion of reduced glutathione by L-DOPA and dopamine. Relevance to Parkinson’s disease. Neuroreport 6:1480–1484
Spencer JPE, Schroeter H, Kuhnle G et al (2001) Epicatechin and its in vivo metabolite, 3′-O-methyl epicatechin, protect human fibroblasts from oxidative-stress-induced cell death involving caspase-3 activation. Biochem J 354:493–500
Spencer JPE, Whiteman M, Jenner P et al (2002) 5-s-Cysteinyl-conjugates of catecholamines induce cell damage, extensive DNA base modification and increases in caspase-3 activity in neurons. J Neurochem 81:122–129
Sperker B, Backman JT, Kroemer HK (1997) The role of beta-glucuronidase in drug disposition and drug targeting in humans. Clin Pharmacokinet 33:18–31
Spires TL, Hannan AJ (2005) Nature, nurture, neurology: gene-environment interactions in neurodegenerative disease. FEBS Anniversary Prize Lecture delivered on 27 June 2004 at the 29th FEBS Congress in Warsaw. FEBS J 272:2347–2361
Stoll S, Scheuer K, Pohl O et al (1996) Ginkgo biloba extract (EGb 761) independently improves changes in passive avoidance learning and brain membrane fluidity in the aging mouse. Pharmacopsychiatry 29:144–149
Suganuma M, Okabe S, Oniyama M et al (1998) Wide distribution of [H-3](-)-epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse tissue. Carcinogenesis 19:1771–1776
Talavera S, Felgines C, Texier O et al (2005) Anthocyanin metabolism in rats and their distribution to digestive area, kidney, and brain. J Agric Food Chem 53:3902–3908
Terao J, Yamaguchi S, Shirai M et al (2001) Protection by quercetin and quercetin 3-O-beta-D-glucuronide of peroxynitrite-induced antioxidant consumption in human plasma low-density lipoprotein. Free Radic Res 35:925–931
Topic B, Hasenohrl RU, Hacker R et al (2002) Enhanced conditioned inhibitory avoidance by a combined extract of Zingiber officinale and Ginkgo biloba. Phytother Res 16:312–315
Uchida K, Shiraishi M, Naito Y et al (1999) Activation of stress signaling pathways by the end product of lipid peroxidation. 4-hydroxy-2-nonenal is a potential inducer of intracellular peroxide production. J Biol Chem 274:2234–2242
van Praag H, Lucero MJ, Yeo GW et al (2007) Plant-derived flavanol (-)epicatechin enhances angiogenesis and retention of spatial memory in mice. J Neurosci 27:5869–5878
Vauzour D, Ravaioli G, VafeiAdou K et al (2008) Peroxynitrite induced formation of the neurotoxins 5-S-cysteinyl-dopamine and DHBT-1: implications for Parkinson’s disease and protection by polyphenols. Arch Biochem Biophys 476:145–151
Vauzour D, VafeiAdou K, Rice-Evans C et al (2007) Activation of pro-survival Akt and ERK1/2 signalling pathways underlie the anti-apoptotic effects of flavanones in cortical neurons. J Neurochem 103:1355–1367
Vauzour D, VafeiAdou K, Spencer JP (2007) Inhibition of the formation of the neurotoxin 5-S-cysteinyl-dopamine by polyphenols. Biochem Biophys Res Commun 362:340–346
Wang L, Matsushita K, Araki I et al (2002) Inhibition of c-Jun N-terminal kinase ameliorates apoptosis induced by hydrogen peroxide in the kidney tubule epithelial cells (NRK-52E). Nephron 91:142–147
Wang X, Chen S, Ma G et al (2005) Genistein protects dopaminergic neurons by inhibiting microglial activation. Neuroreport 16:267–270
Wang Y, Wang L, Wu J et al (2006) The in vivo synaptic plasticity mechanism of EGb 761-induced enhancement of spatial learning and memory in aged rats. Br J Pharmacol 148:147–153
Wang Z, Fernandez-Seara M, Alsop DC et al (2008) Assessment of functional development in normal infant brain using arterial spin labeled perfusion MRI. Neuroimage 39:973–978
White LR, Petrovitch H, Ross GW et al (2000) Brain aging and midlife tofu consumption. J Am Coll Nutr 19:242–255
Williams CM, El Mohsen MA, Vauzour D et al (2008) Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels. Free Radic Biol Med 45:295–305
Williams RJ, Spencer JP, Rice-Evans C (2004) Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 36:838–849
Winter JC (1998) The effects of an extract of Ginkgo biloba, EGb 761, on cognitive behavior and longevity in the rat. Physiol Behav 63:425–433
Yamamoto N, Moon JH, Tsushida T et al (1999) Inhibitory effect of quercetin metabolites and their related derivatives on copper ion-induced lipid peroxidation in human low-density lipoprotein. Arch Biochem Biophys 372:347–354
Youdim KA, Dobbie MS, Kuhnle G et al (2003) Interaction between flavonoids and the blood-brain barrier: in vitro studies. J Neurochem 85:180–192
Youdim KA, Joseph JA (2001) A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: a multiplicity of effects. Free Radic Biol Med 30:583–594
Youdim KA, Qaiser MZ, Begley DJ et al (2004) Flavonoid permeability across an in situ model of the blood-brain barrier. Free Radic Biol Med 36:592–604
Zheng LT, Ock J, Kwon BM et al (2008) Suppressive effects of flavonoid fisetin on lipopolysaccharide-induced microglial activation and neurotoxicity. Int Immunopharmacol 8:484–494