The need for aquatic tracking networks: the Permanent Belgian Acoustic Receiver Network
Tóm tắt
Aquatic biotelemetry techniques have proven to be valuable tools to generate knowledge on species behaviour, gather oceanographic data and help in assessing effects from anthropogenic disturbances. These data types support international policies and directives, needed for species and habitat conservation. As aquatic systems are highly interconnected and cross administrative borders, optimal data gathering should be organized on a large scale. This need triggered the development of regional, national and international aquatic animal tracking network initiatives around the globe. In Belgium, a national acoustic receiver network for fish tracking, called the Permanent Belgian Acoustic Receiver Network, was set up in 2014 with different research institutes collaborating. It is a permanent network with 160 acoustic receivers and since the start, over 800 animals from 16 different fish species have been tagged and generated more than 17 million detections so far. To handle all the (meta)data generated, a data management platform was built. The central database stores all the data and has an interactive web interface that allows the users to upload, manage and explore (meta)data. In addition, the database is linked to an R-shiny application to allow the user to visualize and download the detection data. The permanent tracking network is not only a collaborative platform for exchange of data, analysis tools, devices and knowledge. It also creates opportunities to perform feasibility studies and Ph.D. studies in a cost-efficient way. The Belgian tracking network is a first step towards a Pan-European aquatic tracking network.
Tài liệu tham khảo
Block BA, Holbrook CM, Simmons SE, Holland KN, Ault JS, Costa DP, et al. Toward a national animal telemetry network for aquatic observations in the United States. Anim Biotelemetry. 2016;4(1):6.
Reubens J, De Rijcke M, Degraer S, Vincx M. Diel variation in feeding and activity patterns of juvenile Atlantic cod at offshore wind farms. J Sea Res. 2014;85:214–21.
Winter HV, Aarts G, van Keeken OA. Residence time and behaviour of sole and cod in the Offshore Wind farm Egmond aan Zee (OWEZ). IMARES, Wageningen YR report number: C038/10; 2010.
Verhelst P, Buysse D, Reubens J, Pauwels I, Aelterman B, Van Hoey S, et al. Downstream migration of European eel (Anguilla anguilla L.) in an anthropogenically regulated freshwater system: implications for management. Fish Res. 2018;199:252–62.
Abecasis D, Afonso P, Erzini K. Can small MPAs protect local populations of a coastal flatfish, Solea senegalensis? Fish Manage Ecol. 2014;21(3):175–85.
Afonso P, Abecasis D, Santos RS, Fontes J. Contrasting movements and residency of two serranids in a small Macaronesian MPA. Fish Res. 2016;177:59–70.
De Pontual H, Lalire M, Fablet R, Laspougeas C, Garren F, Martin S, et al. New insights into behavioural ecology of European seabass off the West Coast of France: implications at local and population scales. ICES J Mar Sci. 2018. https://doi.org/10.1093/icesjms/fsy086.
Hussey NE, Kessel ST, Aarestrup K, Cooke SJ, Cowley PD, Fisk AT, et al. Aquatic animal telemetry: a panoramic window into the underwater world. Science. 2015;348:1255642.
Lennox RJ, Aarestrup K, Cooke SJ, Cowley PD, Deng ZQD, Fisk AT, et al. Envisioning the future of aquatic animal tracking: technology, science, and application. Bioscience. 2017;67(10):884–96.
Allen AM, Singh NJ. Linking movement ecology with wildlife management and conservation. Front Ecol Evol. 2016;3:155.
Crossin GT, Heupel MR, Holbrook CM, Hussey NE, Lowerre-Barbieri SK, Nguyen VM, et al. Acoustic telemetry and fisheries management. Ecol Appl. 2017;27(4):1031–49.
Steckenreuter A, Hoenner X, Huveneers C, Simpfendorfer C, Buscot MJ, Tattersall K, et al. Optimising the design of large-scale acoustic telemetry curtains. Mar Freshw Res. 2016;68(8):884–96.
Whoriskey F, Hindell M. Developments in tagging technology and their contributions to the protection of marine species at risk. Ocean Dev Int Law. 2016;47(3):221–32.
Reubens J, Verhelst P, van der Knaap I, Deneudt K, Moens T, Hernandez F. Environmental factors influence the detection probability in acoustic telemetry in a marine environment: results from a new setup. Hydrobiologia. 2018. https://doi.org/10.1007/s10750-017-3478-7.
Huisman J, Verhelst P, Deneudt K, Goethals P, Moens T, Nagelkerke LAJ, et al. Heading south or north: novel insights on European silver eel Anguilla anguilla migration in the North Sea. Mar Ecol Prog Ser. 2016;554:257–62.
Abecasis D, Steckenreuter A, Reubens J, Aarestrup K, Alós J, Badalamenti F, et al. A review of acoustic telemetry in Europe and the need for a regional aquatic telemetry network. Anim Biotelemetry. 2018;6(1):12.
Breine J, Pauwels IS, Verhelst P, Vandamme L, Baeyens R, Reubens J, et al. Successful external acoustic tagging of twaite shad Alosa fallax (Lacepede 1803). Fish Res. 2017;191:36–40.
Verhelst P, Reubens J, Pauwels I, Buysse D, Aelterman B, Hoey S, et al. Movement behaviour of large female yellow European eel (Anguilla anguilla L.) in a freshwater polder area. Ecol Freshw Fish. 2018;27:471–80.
Hoenner X, Huveneers C, Steckenreuter A, Simpfendorfer C, Tattersall K, Jaine F, et al. Australia’s continental-scale acoustic tracking database and its automated quality control process. Sci Data. 2018;5:170206.
Cooke SJ, Iverson SJ, Stokesbury MJW, Hinch SG, Fisk AT, VanderZwaag DL, et al. Ocean Tracking Network Canada: a network approach to addressing critical issues in fisheries and resource management with implications for ocean governance. Fisheries. 2011;36(12):583–92.
Cowley P, Bennett R, Childs A, Murray T. Reflection on the first five years of South Africa’s Acoustic Tracking Array Platform (ATAP): status, challenges and opportunities. Afr J Mar Sci. 2017;39(4):363–72.