The nature, origin and modification of insoluble organic matter in chondrites, the major source of Earth’s C and N
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abreu, 2004, Characterisation of matrix in the EET 92042 CR2 carbonaceous chondrite: insights into textural and mineralogical heterogeneity, Meteor. Planet. Sci., 39, A12
Abreu, 2010, Early solar system processes recorded in the matrices of two highly pristine CR3 carbonaceous chondrites, MET 00426 and QUE 99177, Geochim. Cosmochim. Acta, 74, 1146, 10.1016/j.gca.2009.11.009
Abreu, 2013, Opaque assemblages in CR2 Graves Nunataks (GRA) 06100 as indicators of shock-driven hydrothermal alteration in the CR chondrite parent body, Meteor. Planet. Sci., 48, 2406, 10.1111/maps.12227
Aléon, 2001, Clues to the origin of interplanetary dust particles from the isotopic study of their hydrogen-bearing phases, Geochim. Cosmochim. Acta, 65, 4399, 10.1016/S0016-7037(01)00720-7
Aléon, 2003, Nitrogen isotopic composition of macromolecular organic matter in interplanetary dust particles, Geochim. Cosmochim. Acta, 67, 3773, 10.1016/S0016-7037(03)00170-4
Alexander, 1998, The origin of chondritic macromolecular organic matter: a carbon and nitrogen isotope study, Meteor. Planet. Sci., 33, 603, 10.1111/j.1945-5100.1998.tb01667.x
Alexander, 2007, Astronomical and meteoritic evidence for the nature of interstellar dust and its processing in protoplanetary disks, 801
Alexander, 2007, The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter, Geochim. Cosmochim. Acta, 71, 4380, 10.1016/j.gca.2007.06.052
Alexander, 2008, Organics in meteorites − Solar or interstellar?, 293
Alexander, 2010, Deuterium enrichments in chondritic macromolecular material −Implications for the origin and evolution of organics, water and asteroids, Geochim. Cosmochim. Acta, 74, 4417, 10.1016/j.gca.2010.05.005
Alexander, 2012, The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets, Science, 337, 721, 10.1126/science.1223474
Alexander, 2013, The classification of CM and CR chondrites using bulk H, C and N abundances and isotopic compositions, Geochim. Cosmochim. Acta, 123, 244, 10.1016/j.gca.2013.05.019
Alexander, 2014, A multi-technique search for the most primitive CO chondrites, Lunar Planet. Sci., 45
Alexander, 2014, Elemental, isotopic and structural changes in Tagish Lake insoluble organic matter produced by parent body processes, Meteor. Planet. Sci., 49, 503, 10.1111/maps.12282
Alexander, 2015, Carbonate abundances and isotopic compositions in chondrites, Meteor. Planet. Sci., 50, 810, 10.1111/maps.12410
Alexander, 2015, Are radicals the carriers of D in IOM?, Lunar Planet. Sci., 46
Alexander, 2005, Re-examining the role of chondrules in producing the volatile element fractionations in chondrites, Meteor. Planet. Sci., 40, 943, 10.1111/j.1945-5100.2005.tb00166.x
Alpern, 1973, Distribution de la matière organique dans la météorite d’Orgueil par microscopie en fluorescence, Earth Planet. Sci. Lett., 19, 422, 10.1016/0012-821X(73)90185-4
Aponte, 2011, Effects of secondary alteration on the composition of free and IOM-derived monocarboxylic acids in carbonaceous chondrites, Geochim. Cosmochim. Acta, 75, 2309, 10.1016/j.gca.2011.01.040
Aponte, 2014, Assessing the origins of aliphatic amines in the Murchison meteorite from their compound-specific carbon isotopic ratios and enantiomeric composition, Geochim. Cosmochim. Acta, 141, 331, 10.1016/j.gca.2014.06.035
Aponte, 2014, Chirality of meteoritic free and IOM-derived monocarboxylic acids and implications for prebiotic organic synthesis, Geochim. Cosmochim. Acta, 131, 1, 10.1016/j.gca.2014.01.035
Aponte, 2015, Indigenous aliphatic amines in the aqueously altered Orgueil meteorite, Meteor. Planet. Sci., 50, 1733, 10.1111/maps.12507
Asplund, 2009, The chemical composition of the Sun, Ann. Rev. Astron. Astrophys., 47, 481, 10.1146/annurev.astro.46.060407.145222
Augé, 2016, Irradiation of nitrogen-rich ices by swift heavy ions. Clues for the formation of ultracarbonaceous micrometeorites, Astron. Astrophys., 592, 10.1051/0004-6361/201527650
Bardin, 2015, D/H and 15N/14N isotopic ratios in organic matter of ultracarbonaceous Antarctic micrometeorites, Meteor. Planet. Sci. Suppl., 50
Beck, 2014, Transmission infrared spectra (2–25μm) of carbonaceous chondrites (CI, CM, CV-CK, CR, C2 ungrouped): Mineralogy, water, and asteroidal processes, Icarus, 229, 263, 10.1016/j.icarus.2013.10.019
Bernatowicz, 2003, Pristine presolar silicon carbide, Geochim. Cosmochim. Acta, 67, 4679, 10.1016/S0016-7037(03)00461-7
Binet, 2002, Heterogeneous distribution of paramagnetic radicals in insoluble organic matter from the Orgueil and Murchison meteorites, Geochim. Cosmochim. Acta, 66, 4177, 10.1016/S0016-7037(02)00983-3
Binet, 2004, Diradicaloids in the insoluble organic matter from the Tagish Lake meteorite: comparison with the Orgueil and Murchison meteorites, Meteor. Planet. Sci., 39, 1649, 10.1111/j.1945-5100.2004.tb00064.x
Binet, 2004, Occurence of abundant diradicaloid moieties in the insoluble organic matter from the Orgueil and Murchison meteorites: a fingerprint of its extraterrestrial origin?, Geochim. Cosmochim. Acta, 68, 881, 10.1016/S0016-7037(03)00500-3
Bland, 2014, Pressure–temperature evolution of primordial solar system solids during impact-induced compaction, Nat. Commun., 5
Blinova, 2014, Testing variations within the Tagish Lake meteorite – I: mineralogy and petrology of pristine samples, Meteor. Planet. Sci., 49, 473, 10.1111/maps.12271
Bonal, 2006, Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter, Geochim. Cosmochim. Acta, 70, 1849, 10.1016/j.gca.2005.12.004
Bonal, 2007, Organic matter and metamorphic history of CO chondrites, Geochim. Cosmochim. Acta, 71, 1605, 10.1016/j.gca.2006.12.014
Bonal, 2016, Thermal history of type 3 chondrites from the Antarctic meteorite collection determined by Raman spectroscopy of their polyaromatic carbonaceous matter, Geochim. Cosmochim. Acta, 189, 312, 10.1016/j.gca.2016.06.017
Bonnet, 2015, Formation of analogs of cometary nitrogen-rich refractory organics from thermal degradation of tholin and HCN polymer, Icarus, 250, 53, 10.1016/j.icarus.2014.11.006
Bose, 2014, Assessment of alteration processes on circumstellar and interstellar grains in Queen Alexandra Range 97416, Earth Planet. Sci. Lett., 399, 128, 10.1016/j.epsl.2014.05.007
Botta, 2002, Extraterrestrial organic compounds in meteorites, Surv. Geophys., 23, 411, 10.1023/A:1020139302770
Braatz, 2000, Infrared, ultraviolet and electron paramagnetic resonance measurements on presolar diamonds: implications for optical features and origin, Meteor. Planet. Sci., 35, 75, 10.1111/j.1945-5100.2000.tb01975.x
Bradley, 2014, Early solar nebula grains −Interplanetary dust particles, 287
Brearley, 1995, Aqueous alteration and brecciation in Bells, an unusual saponite-bearing, CM chondrite, Geochim. Cosmochim. Acta, 59, 2291, 10.1016/0016-7037(95)00107-B
Brearley, 2006, The action of water, 584
Brownlee, 2000, Spatially resolved acid dissolution of IDPs: the state of carbon and the abundance of diamonds in the dust, Lunar Planet. Sci., 31
Brunetto, 2011, Mid-IR, far-IR, raman micro-spectroscopy, and FESEM-EDX study of IDP L2021C5: clues to its origin, Icarus, 212, 896, 10.1016/j.icarus.2011.01.038
Burbine, 2002, Meteoritic parent bodies: their number and identification, 653
Busemann, 2000, Primordial noble gases in Phase Q in carbonaceous and ordinary chondrites studied by closed system stepped etching, Meteor. Planet. Sci., 35, 949, 10.1111/j.1945-5100.2000.tb01485.x
Busemann, 2006, Correlated analyses of D- and 15N-rich carbon grains from CR2 chondrite EET 92042, Meteor. Planet. Sci. Suppl., 41, A34
Busemann, 2006, Correlated microscale isotope and scanning transmission X-Ray analyses of isotopically anomalous organic matter from the CR2 chondrite EET 92042, Lunar Planet. Sci., 37
Busemann, 2006, Interstellar chemistry recorded in organic matter from primitive meteorites, Science, 312, 727, 10.1126/science.1123878
Busemann, 2007, Characterization of insoluble organic matter in primitive meteorites by microRaman spectroscopy, Meteor. Planet. Sci., 42, 1387, 10.1111/j.1945-5100.2007.tb00581.x
Busemann, 2007, Secondary ion mass spectrometry and X-Ray absorption near-edge structure spectroscopy of isotopically anomalous organic matter from CR1 chondrites GRO 95577, Lunar Planet. Sci., 38
Busemann, 2009, Ultra-primitive interplanetary dust particles from the comet 26P/Grigg-Skjellerup dust stream collection, Earth Planet. Sci. Lett., 288, 44, 10.1016/j.epsl.2009.09.007
Charnley, 2008, Interstellar reservoirs of cometary matter, Space Sci. Rev., 138, 59, 10.1007/s11214-008-9331-6
Chick, 1997, Thermal processing of interstellar dust grains in the primitive solar environment, Astrophys. J., 477, 398, 10.1086/303700
Cho, 2008, Structural characterization of sputtered hydrogenated amorphous carbon films by solid state nuclear magnetic resonance, J. Appl. Phys., 104, 013531, 10.1063/1.2952515
Christophe Michel-Levy, 1981, Microanalysis by Raman spectroscopy of carbon in the Tieschitz chondrite, Nature, 292, 321, 10.1038/292321a0
Ciesla, 2012, Organic synthesis via irradiation and warming of ice grains in the solar nebula, Science, 336, 452, 10.1126/science.1217291
Ciesla, 2009, Two-dimensional transport of solids in viscous protoplanetary disks, Icarus, 200, 655, 10.1016/j.icarus.2008.12.009
Cleeves, 2014, The ancient heritage of water ice in the Solar System, Science, 345, 1590, 10.1126/science.1258055
Cleeves, 2016, Exploring the origins of deuterium enrichments in solar nebular organics, Astrophys. J., 819:13
Cody, 2005, NMR studies of chemical structural variation of insoluble organic matter from different carbonaceous chondrite groups, Geochim. Cosmochim. Acta, 69, 1085, 10.1016/j.gca.2004.08.031
Cody, 2017, The perplexing nature of nitrogen in chondritic IOM, Lunar Planet. Sci., 48
Cody, 2002, Solid state (1H and 13C) NMR spectroscopy of the insoluble organic residue in the Murchison meteorite: a self-consistent quantitative analysis, Geochim. Cosmochim. Acta, 66, 1851, 10.1016/S0016-7037(01)00888-2
Cody, 2008, Quantitative organic and light element analysis of Comet 81P/Wild 2 particles using C- N-, and O-μ-XANES, Meteor. Planet. Sci., 43, 353, 10.1111/j.1945-5100.2008.tb00627.x
Cody, 2008, Unraveling the chemical history of the Solar System as recorded in extraterrestrial organic matter, 277
Cody, 2008, Organic thermometry for chondritic parent bodies, Earth Planet. Sci. Lett., 272, 446, 10.1016/j.epsl.2008.05.008
Cody, 2008, The peculiar relationship between meteoritic organic molecular structure and deuterium abundance, Lunar Planet. Sci., 39
Cody, 2011, Establishing a molecular relationship between chondritic and cometary organic solids, Proc. Natl. Acad. Sci., 108, 19171, 10.1073/pnas.1015913108
Compiègne, 2011, The global dust SED: tracing the nature and evolution of dust with DustEM, Astron. Astrophys., 525, A103, 10.1051/0004-6361/201015292
Cooper, 2001, Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth, Nature, 414, 879, 10.1038/414879a
Croat, 2009, Auger and NanoSIMS investigations of pristine presolar SiC surfaces, Lunar Planet. Sci., 40
Cronin, 1987, 13C NMR spectroscopy of the insoluble carbon of carbonaceous chondrites, Geochim. Cosmochim. Acta, 51, 299, 10.1016/0016-7037(87)90242-0
Dartois, 2004, Diffuse interstellar medium organic polymers. Photoproduction of the 3.4, 6.85 and 7.25mm features, Astron. Astrophys., 423, L33, 10.1051/0004-6361:200400032
Dartois, 2005, Ultraviolet photoproduction of ISM dust. Laboratory characterisation and astrophysical relevance, Astron. Astrophys., 432, 895, 10.1051/0004-6361:20042094
Dartois, 2013, UltraCarbonaceous Antarctic micrometeorites, probing the Solar System beyond the nitrogen snow-line, Icarus, 224, 243, 10.1016/j.icarus.2013.03.002
Davidson, 2014, Abundances of presolar silicon carbide grains in primitive meteorites determined by NanoSIMS, Geochim. Cosmochim. Acta, 139, 248, 10.1016/j.gca.2014.04.026
De Gregorio, 2010, Isotopic anomalies in organic nanoglobules from Comet 81P/Wild 2: comparison to Murchison nanoglobules and isotopic anomalies induced in terrestrial organics by electron irradiation, Geochim. Cosmochim. Acta, 74, 4454, 10.1016/j.gca.2010.05.010
De Gregorio, 2011, Correlated microanalysis of cometary organic grains returned by Stardust, Meteor. Planet. Sci., 46, 1376, 10.1111/j.1945-5100.2011.01237.x
De Gregorio, 2013, Isotopic and chemical variation of organic nanoglobules in primitive meteorites, Meteor. Planet. Sci., 48, 904, 10.1111/maps.12109
DeMeo, 2014, Solar System evolution from compositional mapping of the asteroids, Nature, 505, 629, 10.1038/nature12908
Deloule, 1998, Interstellar hydroxyl in meteoritic chondrules: implications for the origin of water in the inner solar system, Geochim. Cosmochim. Acta, 62, 3367, 10.1016/S0016-7037(98)00232-4
Delpoux, 2008, CW- and pulsed-EPR of carbonaceous matter in primitive meteorites: solving a lineshape paradox, Spectrochim. Acta Part A, 69, 1301, 10.1016/j.saa.2007.09.045
Delpoux, 2011, Biradical character of D-rich carriers in the insoluble organic matter of carbonaceous chondrites: a relic of the protoplanetary disk chemistry, Geochim. Cosmochim. Acta, 75, 326, 10.1016/j.gca.2010.09.033
Derenne, 2005, Size discontinuity between interstellar and chondritic aromatic structures: a high-resolution transmission electron microscopy study, Geochim. Cosmochim. Acta, 69, 3911, 10.1016/j.gca.2005.02.029
Dermott, 2002, Asteroidal dust, 423
Dobricǎ, 2009, Connection between micrometeorites and Wild 2 particles: from Antarctic snow to cometary ices, Meteor. Planet. Sci., 44, 1643, 10.1111/j.1945-5100.2009.tb01196.x
Dobrica, 2011, Raman characterization of carbonaceous matter in CONCORDIA Antarctic micrometeorites, Meteor. Planet. Sci., 46, 1363, 10.1111/j.1945-5100.2011.01235.x
Dobrica, 2012, Transmission electron microscopy of CONCORDIA ultracarbonaceous Antarctic micrometeorites (UCAMMs): mineralogical properties, Geochim. Cosmochim. Acta, 76, 68, 10.1016/j.gca.2011.10.025
Draine, 2009, Interstellar dust models and evolutionary implications, 453
Duer, 2004
Duley, 2012, The 217.5nm band, infrared absorption, and infrared emission features in hydrogenated amorphous carbon nanoparticles, Astrophys. J., 761, 115, 10.1088/0004-637X/761/2/115
Duprat, 2010, Extreme deuterium excesses in ultracarbonaceous micrometeorites from central Antarctic snow, Science, 328, 742, 10.1126/science.1184832
Egerton, 2014, Choice of operating voltage for a transmission electron microscope, Ultramicroscopy, 145, 85, 10.1016/j.ultramic.2013.10.019
Ehrenfreund, 2000, Organic molecules in the interstellar medium, comets and meteorites: a voyage from dark clouds to the early Earth, Annu. Rev. Astron. Astrophys., 38, 427, 10.1146/annurev.astro.38.1.427
Ehrenfreund, 1991, Comparison of interstellar and meteoritic organic matter at 3.4 microns, Astron. Astrophys., 252, 712
Ehrenfreund, 2001, Extraterrestrial amino acids in Orgueil and Ivuna: tracing the parent body of CI type carbonaceous chondrites, Proc. Natl. Acad. Sci., 98, 2138, 10.1073/pnas.051502898
Floss, 2009, High abundances of circumstellar and interstellar C-anomalous phases in the primitive CR3 chondrites QUE 99177 and MET 00426, Astrophys. J., 697, 1242, 10.1088/0004-637X/697/2/1242
Floss, 2004, Carbon and nitrogen isotopic anomalies in an anhydrous interplanetary dust particle, Science, 303, 1355, 10.1126/science.1093283
Floss, 2006, Identification of isotopically primitive interplanetary dust particles: a NanoSIMS isotopic imaging study, Geochim. Cosmochim. Acta, 70, 2371, 10.1016/j.gca.2006.01.023
Floss, 2012, Ultracarbonaceous Antarctic micrometeorites: origins and relationships to other primitive extraterrestrial materials, Lunar Planet. Sci., 43
Floss, 2014, Coordinated NanoSIMS and FIB-TEM analyses of organic matter and associated matrix materials in CR3 chondrites, Geochim. Cosmochim. Acta, 139, 1, 10.1016/j.gca.2014.04.023
Flynn, 2002, Infrared analysis of organic carbon in anhydrous and hydrated interplanetary dust particles: FTIR identification of carbonyl (CO) in IDPs, Lunar Planet. Sci., 33
Flynn, 2003, The origin of organic matter in the solar system: evidence from interplanetary dust particles, Geochim. Cosmochim. Acta, 67, 4791, 10.1016/j.gca.2003.09.001
Foustoukos, 2011, Kinetics of H2-O2-H2O redox equilibria and formation of metastable H2O2 under low temperature hydrothermal conditions, Geochim. Cosmochim. Acta, 75, 1594, 10.1016/j.gca.2010.12.020
Fray, 2016, High-molecular-weight organic matter in the particles of comet 67P/Churyumov–Gerasimenko, Nature, 538, 72, 10.1038/nature19320
Fujiya, 2013, Mn-Cr ages of dolomites in CI chondrites and the Tagish Lake ungrouped carbonaceous chondrite, Earth Planet. Sci. Lett., 362, 130, 10.1016/j.epsl.2012.11.057
Gail, 2002, Radial mixing in protoplanetary accretion disks. III. Carbon dust oxidation and abundance of hydrocarbons in comets, Astron. Astrophys., 390, 253, 10.1051/0004-6361:20020614
Gardinier, 2000, Solid state CP/MAS 13C NMR of the insoluble matter of the Orgueil and Murchison meteorites: quantitative study, Earth Planet. Sci. Lett., 184, 9, 10.1016/S0012-821X(00)00300-9
Garvie, 2004, Nanosized carbon-rich grains in carbonaceous chondrite meteorites, Earth Planet. Sci. Lett., 224, 431, 10.1016/j.epsl.2004.05.024
Garvie, 2005, Structure and bonding of carbon in clays from CI carbonaceous chondrites, Lunar Planet. Sci., 36
Garvie, 2006, Carbonaceous materials in the acid residue from the Orgueil carbonaceous chondrite meteorite, Meteor. Planet. Sci., 41, 633, 10.1111/j.1945-5100.2006.tb00486.x
Garvie, 2008, Scanning electron microscopical and cross sectional analysis of extraterrestrial carbonaceous nanoglobules, Meteor. Planet. Sci., 43, 899, 10.1111/j.1945-5100.2008.tb01088.x
Geiss, 1998, Abundances of deuterium and helium-3 in the protosolar cloud, Space Sci. Rev., 84, 239, 10.1023/A:1005039822524
Gibb, 2004, Interstellar ice: the infrared space observatory legacy, Astrophys. J. Suppl., 151, 35, 10.1086/381182
Gilmour, 2003, Structural and isotopic analysis of organic matter in carbonaceous chondrites, 269
Glavin, 2011, The effects of parent body processes on amino acids in carbonaceous chondrites, Meteor. Planet. Sci., 45, 1948, 10.1111/j.1945-5100.2010.01132.x
Godard, 2011, Ion irradiation of carbonaceous interstellar analogues. Effects of cosmic rays on the 3.4μm interstellar absorption band, Astron. Astrophys., 529, 146, 10.1051/0004-6361/201016228
Gourier, 2008, Extreme deuterium enrichment of organic radicals in the Orgueil meteorite: revisiting the interstellar interpretation? Geochim, Cosmochim. Acta, 72, 1914, 10.1016/j.gca.2008.01.017
Gradie, 1989, Distribution of taxonomic classes and the compositional structure of the asteroid belt, 316
Grady, 1986, Compositional differences in enstatite chondrites based on carbon and nitrogen stable isotope measurements, Geochim. Cosmochim. Acta, 50, 2799, 10.1016/0016-7037(86)90228-0
Greenberg, 2000, Ultraviolet photoprocessing of interstellar dust mantles as a source of polycyclic aromatic hydrocarbons and other conjugated molecules, Astrophys. J., 531, L71, 10.1086/312526
Grossman, 2002, Zoned chondrules in Semarkona: evidence for high- and low-temperature processing, Meteor. Planet. Sci., 37, 49, 10.1111/j.1945-5100.2002.tb00795.x
Halbout, 1990, Hydrogen and oxygen isotope compositions in kerogen from the Orgueil meteorite: clues to a solar origin, Geochim. Cosmochim. Acta, 54, 1453, 10.1016/0016-7037(90)90168-K
Hallenbeck, 2000, Evolving optical properties of annealing silicate grains: from amorphous condensate to crystalline mineral, Astrophys. J., 535, 247, 10.1086/308810
Hanna, 2015, Impact-induced brittle deformation, porosity loss, and aqueous alteration in the Murchison CM chondrite, Geochim. Cosmochim. Acta, 171, 256, 10.1016/j.gca.2015.09.005
Harju, 2014, Progressive aqueous alteration of CR carbonaceous chondrites, Geochim. Cosmochim. Acta, 139, 267, 10.1016/j.gca.2014.04.048
Hashiguchi, 2013, In situ observation of D-rich carbonaceous globules embedded in NWA 801 CR2 chondrite, Geochim. Cosmochim. Acta, 122, 306, 10.1016/j.gca.2013.08.007
Hashiguchi, 2015, Deuterium- and 15N-signatures of organic globules in Murchison and Northwest Africa 801 meteorites, Geochem. J., 49, 377, 10.2343/geochemj.2.0363
Hayatsu, 1977, Origin of organic matter in the early solar system-VII. The organic polymer in carbonaceous chondrites, Geochim. Cosmochim. Acta, 41, 1325, 10.1016/0016-7037(77)90076-X
Hayatsu, 1980, Phenolic esters in the organic polymer of the Murchison meteorite, Science, 207, 1202, 10.1126/science.207.4436.1202
Herd, 2011, Origin and evolution of prebiotic organic matter as inferred from the Tagish Lake meteorite, Science, 332, 1304, 10.1126/science.1203290
Hilts, 2014, Soluble organic compounds in the Tagish Lake meteorite, Meteor. Planet. Sci., 49, 526, 10.1111/maps.12272
Howard, 2015, Classification of hydrous meteorites (CR, CM and C2 ungrouped) by phyllosilicate fraction: PSD-XRD modal mineralogy and planetesimal environments, Geochim. Cosmochim. Acta, 149, 206, 10.1016/j.gca.2014.10.025
Huang, 2005, Molecular and compound-specific isotopic characterization of monocarboxylic acids in carbonaceous meteorites, Geochim. Cosmochim. Acta, 69, 1073, 10.1016/j.gca.2004.07.030
Huang, 2007, Structure and isotopic ratios of aliphatic side chains in the insoluble organic matter of the Murchison carbonaceous chondrite, Earth Planet. Sci. Lett., 259, 517, 10.1016/j.epsl.2007.05.012
Huss, 1996, The normal planetary noble gas component in primitive chondrites: compositions, carrier, and metamorphic history, Geochim. Cosmochim. Acta, 60, 3311, 10.1016/0016-7037(96)00168-8
Huss, 2003, Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: implications for thermal processing in the solar nebula, Geochim. Cosmochim. Acta, 67, 4823, 10.1016/j.gca.2003.07.019
Huss, 2006, Thermal metamorphism in chondrites, 567
Hutchison, 1987, The Semarkona meteorite: first recorded occurrence of smectite in an ordinary chondrite, and its implications, Geochim. Cosmochim. Acta, 51, 1875, 10.1016/0016-7037(87)90178-5
Iben, 1983, Asymptotic giant branch evolution and beyond, Annu. Rev. Astron. Astrophys., 21, 271, 10.1146/annurev.aa.21.090183.001415
Jones, 1990, The structure and evolution of hydrogenated amorphous carbon grains and mantles in the interstellar medium, Q. J. R. Astron. Soc., 31, 567
Kebukawa, 2015, A kinetic study of the formation of organic solids from formaldehyde: implications for the origin of extraterrestrial organic solids in primitive Solar System objects, Icarus, 248, 412, 10.1016/j.icarus.2014.11.005
Kebukawa, 2010, Spatial distribution of organic matter in the Bells CM2 chondrite using near-field infrared microspectroscopy, Meteor. Planet. Sci., 45, 394, 10.1111/j.1945-5100.2010.01030.x
Kebukawa, 2011, Compositional diversity in insoluble organic matter in type 1, 2 and 3 chondrites as detected by infrared spectroscopy, Geochim. Cosmochim. Acta, 75, 3530, 10.1016/j.gca.2011.03.037
Kebukawa, 2013, Exploring the potential formation of organic solids in chondrites and comets through polymerization of interstellar formaldehyde, Astrophys. J., 771, 19, 10.1088/0004-637X/771/1/19
Kebukawa, 2014, Isotope imaging and the kinetics of deuterium-hydrogen exchange between insoluble organic matter and water, Lunar Planet. Sci., 45
Keller, 2004, The nature of molecular cloud material in interplanetary dust, Geochim. Cosmochim. Acta, 68, 2577, 10.1016/j.gca.2003.10.044
Kemper, 2004, The absence of crystalline silicates in the diffuse interstellar medium, Astrophys. J., 609, 826, 10.1086/421339
Kemper, 2005, Erratum: the absence of crystalline silicates in the diffuse interstellar medium (2004 ApJ 609, 826), Astrophys. J., 633, 10.1086/447764
Kerridge, 1987, Isotopic characterisation of kerogen-like material in the Murchison carbonaceous chondrite, Geochim. Cosmochim. Acta, 51, 2527, 10.1016/0016-7037(87)90303-6
Kerridge, 1988, Deuterium exchange during acid-demineralisation, Geochim. Cosmochim. Acta, 52, 2251, 10.1016/0016-7037(88)90127-5
Kerridge, 1983, Isotopic composition of carbonaceous-chondrite kerogen: evidence for an interstellar origin of organic matter in meteorites, Earth Planet. Sci. Lett., 64, 186, 10.1016/0012-821X(83)90203-0
Kilcoyne, 2003, Interferometer controlled scanning transmission microscopes at the advanced light source, J. Synchrotron Radiat., 10, 125, 10.1107/S0909049502017739
Kissel, 1987, The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1, Nature, 326, 755, 10.1038/326755a0
Klöck, 1989, Unusual olivine and pyroxene compositions in interplanetary dust and unequilibrated ordinary chondrites, Nature, 339, 126, 10.1038/339126a0
Komiya, 1996, Organic compounds from insoluble organic matter isolated from the Murchison carbonaceous chondrite by heating experiments, Bull. Chem. Soc. Jpn., 69, 53, 10.1246/bcsj.69.53
Komiya, 1993, Examination of organic compounds from insoluble organic matter isolated from some Antarctic carbonaceous chondrites by heating experiments, Geochim. Cosmochim. Acta, 57, 907, 10.1016/0016-7037(93)90177-X
Kress, 2001, The role of Fischer-Tropsch catalysis in solar nebula chemistry, Meteor. Planet. Sci., 36, 75, 10.1111/j.1945-5100.2001.tb01811.x
Krot, 1998, Progressive alteration in CV3 chondrites: more evidence for asteroidal alteration, Meteor. Planet. Sci., 33, 1065, 10.1111/j.1945-5100.1998.tb01713.x
Krot, 2014, Classification of meteorites and their genetic relationships, 1
Kwok, 2011, Mixed aromatic-aliphatic organic nanoparticles as carriers of unidentified infrared emission features, Nature, 479, 80, 10.1038/nature10542
Kwok, 2004, The synthesis of organic and inorganic compounds in evolved stars, Nature, 430, 985, 10.1038/nature02862
Lambert, 1986, The chemical composition of carbon stars I. Carbon, nitrogen, and oxygen in 30 cool carbon stars in the galactic disk, Astrophys. J. Suppl., 62, 373, 10.1086/191145
Laurent, 2014, Isotopic and structural signature of experimentally irradiated organic matter, Geochim. Cosmochim. Acta, 142, 522, 10.1016/j.gca.2014.07.023
Laurent, 2015, The deuterium/hydrogen distribution in chondritic organic matter attests to early ionizing irradiation, Nat. Commun., 6, 10.1038/ncomms9567
Le Guillou, 2014, Relationships between organics, water and early stages of aqueous alteration in the pristine CR3.0 chondrite MET 00426, Geochim. Cosmochim. Acta, 131, 344, 10.1016/j.gca.2013.10.024
Le Guillou, 2012, High resolution TEM of chondritic carbonaceous matter: metamorphic evolution and heterogeneity, Meteor. Planet. Sci., 47, 345, 10.1111/j.1945-5100.2012.01336.x
Le Guillou, 2013, Amorphization and D/H fractionation of kerogens during experimental electron irradiation: comparison with chondritic organic matter, Icarus, 226, 101, 10.1016/j.icarus.2013.05.003
Le Guillou, 2014, Evolution of organic matter in Orgueil, Murchison and Renazzo during parent body aqueous alteration: in situ investigations, Geochim. Cosmochim. Acta, 131, 368, 10.1016/j.gca.2013.11.020
Lee, 2010, The solar nebula on fire: a solution to the carbon deficit in the inner Solar System, Astrophys. J. Lett., 710, L21, 10.1088/2041-8205/710/1/L21
Leroux, 2015, GEMS-like material in the matrix of the Paris meteorite and the early stages of alteration of CM chondrites, Geochim. Cosmochim. Acta, 170, 247, 10.1016/j.gca.2015.09.019
Levin, 2007, Effect of magnetic particles on NMR spectra of Murchison meteorite organic matter and a polymer-based model system, Solid State Nucl. Magn. Reson., 31, 63, 10.1016/j.ssnmr.2007.01.002
Lindgren, 2015, The paradox between low shock-stage and evidence for compaction in CM carbonaceous chondrites explained by multiple low-intensity impacts, Geochim. Cosmochim. Acta, 148, 159, 10.1016/j.gca.2014.09.014
Llorca, 2000, Reaction between H2, CO, and H2S over Fe,Ni metal in the solar nebula: experimental evidence for the formation of sulfur-bearing organic molecules and sulfides, Meteor. Planet. Sci., 35, 841, 10.1111/j.1945-5100.2000.tb01467.x
Lodders, 2003, Solar System abundances and condensation temperatures of the elements, Astrophys. J., 591, 1220, 10.1086/375492
Mahaffy, 1998, Galileo probe measurements of D/H and 3He/4He in Jupiter's atmosphere, Space Sci. Rev., 84, 251, 10.1023/A:1005091806594
Martins, 2007, Indigenous amino acids in primitive CR meteorites, Meteor. Planet. Sci., 42, 2125, 10.1111/j.1945-5100.2007.tb01013.x
Marty, 2013, Primordial origins of Earth’s carbon, Rev. Mineral. Geochem., 75, 149, 10.2138/rmg.2013.75.6
Marty, 2012, The origins and concentrations of water carbon, nitrogen and noble gases on Earth, Earth Planet. Sci. Lett., 313-314, 56, 10.1016/j.epsl.2011.10.040
Matrajt, 2005, FTIR analysis of the organics in IDPs: comparison with the IR spectra of the diffuse interstellar medium, Astron. Astrophys., 433, 979, 10.1051/0004-6361:20041605
Matrajt, 2008, Carbon investigation of two stardust particles a TEM, NanoSIMS, and XANES study, Meteor. Planet. Sci., 43, 315, 10.1111/j.1945-5100.2008.tb00625.x
Matsumoto, 2013, Three-dimensional observation and morphological analysis of organic nanoglobules in a carbonaceous chondrite using X-ray micro-tomography, Geochim. Cosmochim. Acta, 116, 84, 10.1016/j.gca.2012.05.007
McCanta, 2008, The LaPaz Icefield 04840 meteorite: mineralogy, metamorphism, and origin of an amphibole- and biotite-bearing R chondrite, Geochim. Cosmochim. Acta, 72, 5757, 10.1016/j.gca.2008.07.034
Mennella, 2001, UV photodestruction of CH bonds and the evolution of the 3.4 mu m feature carrier. II. The case of hydrogenated carbon grains, Astron. Astrophys., 367, 355, 10.1051/0004-6361:20000340
Mennella, 2002, CH bond formation in carbon grains by exposure to atomic hydrogen: the evolution of the carrier of the interstellar 3.4micron band, Astrophys. J., 569, 531, 10.1086/339229
Messenger, 1997, Evidence for molecular cloud material in meteorites and interplanetary dust, 545
Messenger, 2003, Isotopic signatures of presolar materials in interplanetary dust, Space Sci. Rev., 106, 155, 10.1023/A:1024637704533
Messenger, 2000, Identification of molecular-cloud material in interplanetary dust particles, Nature, 404, 968, 10.1038/35010053
Meyer, 2012, Accurate measurement of electron beam induced displacement cross sections for single-layer graphene, Phys. Rev. Lett., 108, 196102, 10.1103/PhysRevLett.108.196102
Mimura, 2007, Selective release of D and 13C from insoluble organic matter of the Murchison meteorite by impact shock, Meteor. Planet. Sci., 42, 347, 10.1111/j.1945-5100.2007.tb00238.x
Morbidelli, 2002, Origin and evolution of near-Earth objects, 409
Morgan, 1991, A new mechanism for the formation of meteoritic kerogen-like material, Science, 252, 109, 10.1126/science.252.5002.109
Muñoz Caro, 2001, UV photodestruction of CH bonds and the evolution of the 3.4 mu m feature carrier. I. The case of aliphatic and aromatic molecular species, Astron. Astrophys., 367, 347, 10.1051/0004-6361:20000341
Muñoz Caro, 2006, Nature and evolution of the dominant carbonaceous matter in interplanetary dust particles: effects of irradiation and identification with a type of amorphous carbon, Astron. Astrophys., 459, 147, 10.1051/0004-6361:20042571
Mumma, 2011, The chemical composition of comets − Emerging taxonomies and natal heritage, Ann. Rev. Astron. Astrophys., 49, 471, 10.1146/annurev-astro-081309-130811
Nakamura, 2002, Hollow organic globules in the Tagish Lake meteorite as possible products of primitive organic reactions, Int. J. Astrobiol., 1, 179, 10.1017/S1473550402001167
Nakamura, 2005, Mineralogy of ultracarbonaceous large micrometeorites, Meteor. Planet. Sci. Suppl., 40, 5046
Nakamura-Messenger, 2006, Organic globules in the Tagish Lake meteorite: remnants of the protosolar disk, Science, 314, 1439, 10.1126/science.1132175
Nakamura-Messenger, 2011, Experimental aqueous alteration of cometary dust, Meteor. Planet. Sci., 46, 843, 10.1111/j.1945-5100.2011.01197.x
Naraoka, 1988, Hydrocarbons in the Yamato-791198 carbonaceous chondrite from Antarctica, Chem. Lett., 17, 831, 10.1246/cl.1988.831
Naraoka, 2004, A chemical sequence of macromolecular organic matter in the CM chondrites, Meteor. Planet. Sci., 39, 401, 10.1111/j.1945-5100.2004.tb00101.x
Nesvorný, 2010, Cometary origin of the Zodiacal Cloud and carbonaceous micrometeorites. Implications for hot debris disks, Astrophys. J., 713, 816, 10.1088/0004-637X/713/2/816
Nittler, 2016, Astrophysics with extraterrestrial materials, Ann. Rev. Astron. Astrophys., 54, 53, 10.1146/annurev-astro-082214-122505
Nuevo, 2011, XANES analysis of organic residues produced from the UV irradiation of astrophysical ice analogs, Adv. Space Res., 48, 1126, 10.1016/j.asr.2011.05.020
Nuth, 2008, A self-perpetuating catalyst for the production of complex organic molecules in protostellar nebulae, Astrophys. J. Lett., 673, L225, 10.1086/528741
Nuth, 2016, Gas/solid carbon branching ratios in surface-mediated reactions and the incorporation of carbonaceous material into planetesimals, Meteor. Planet. Sci., 51, 1310, 10.1111/maps.12666
Oba, 2009, Elemental and isotopic behavior of macromolecular organic matter from CM chondrites during hydrous pyrolysis, Meteor. Planet. Sci., 44, 943, 10.1111/j.1945-5100.2009.tb00779.x
Okumura, 2011, Gradual and stepwise pyrolyses of insoluble organic matter from the Murchison meteorite revealing chemical structure and isotopic distribution, Geochim. Cosmochim. Acta, 75, 7063, 10.1016/j.gca.2011.09.015
Orthous-Daunay, 2010, Speciation of sulfur in the insoluble organic matter from carbonaceous chondrites by XANES spectroscopy, Earth Planet. Sci. Lett., 300, 321, 10.1016/j.epsl.2010.10.012
Orthous-Daunay, 2013, Mid-infrared study of the molecular structure variability of insoluble organic matter from primitive chondrites, Icarus, 223, 534, 10.1016/j.icarus.2013.01.003
Palguta, 2010, Fluid flow and chemical alteration in carbonaceous chondrite parent bodies, Earth Planet. Sci. Lett., 296, 235, 10.1016/j.epsl.2010.05.003
Pearson, 2002, Clay mineral-organic matter relationships in the early solar system, Meteor. Planet. Sci., 37, 1829, 10.1111/j.1945-5100.2002.tb01166.x
Pearson, 2007, The labelling of meteoritic organic material using osmium tetroxide vapour impregnation, Planet. Space Sci., 55, 1310, 10.1016/j.pss.2007.04.005
Peeters, 2012, Coordinated analysis of in situ organic material in the CR chondrite QUE 99177, Lunar Planet. Sci., 43
Pendleton, 2002, The organic refractory material in the diffuse interstellar medium: mid-infrared spectroscopic constraints, Astrophys. J. Suppl., 138, 75, 10.1086/322999
Pendleton, 1994, Near-infrared absorption spectroscopy of interstellar hydrocarbon grains, Astrophys. J., 437, 683, 10.1086/175031
Piani, 2012, Structure, composition, and location of organic matter in the enstatite chondrite Sahara 97096 (EH3), Meteor. Planet. Sci., 47, 8, 10.1111/j.1945-5100.2011.01306.x
Piani, 2015, Micron-scale D/H heterogeneity in chondrite matrices: a signature of the pristine solar system water?, Earth Planet. Sci. Lett., 415, 154, 10.1016/j.epsl.2015.01.039
Pizzarello, 2006, The nature and distribution of the organic material in carbonaceous chondrites and interplanetary dust particles, 625
Pizzarello, 2008, Molecular asymmetry in extraterrestrial chemistry: insights from a pristine meteorite, Proc. Natl. Acad. Sci., 105, 3700, 10.1073/pnas.0709909105
Quirico, 2003, Metamorphic grade of organic matter in six unequilibrated ordinary chondrites, Meteor. Planet. Sci., 38, 795, 10.1111/j.1945-5100.2003.tb00043.x
Quirico, 2005, Maturation grade of coals as revealed by Raman spectroscopy: progress and problems, Spectrochim. Acta, 61, 2368, 10.1016/j.saa.2005.02.015
Quirico, 2009, Precursor and metamorphic condition effects on Raman spectra of poorly ordered carbonaceous matter in chondrites and coals, Earth Planet. Sci. Lett., 287, 185, 10.1016/j.epsl.2009.07.041
Quirico, 2011, A reappraisal of the metamorphic history of EH3 and EL3 enstatite chondrites, Geochim. Cosmochim. Acta, 75, 3088, 10.1016/j.gca.2011.03.009
Quirico, 2011, Pre-accretion heterogeneity of organic matter in types 1 and 2 chondrites, Lunar Planet. Sci., 42
Quirico, 2014, Origin of insoluble organic matter in type 1 and 2 chondrites: new clues, new questions, Geochim. Cosmochim. Acta, 136, 80, 10.1016/j.gca.2014.03.025
Remusat, 2005, New insight on aliphatic linkages in the macromolecular organic fraction of Orgueil and Murchison meteorites through ruthenium tetroxide oxidation, Geochim. Cosmochim. Acta, 69, 4377, 10.1016/j.gca.2005.05.003
Remusat, 2005, New pyrolytic and spectroscopic data on Orgueil and Murchison insoluble organic matter: a different origin than soluble?, Geochim. Cosmochim. Acta, 69, 3919, 10.1016/j.gca.2005.02.032
Remusat, 2006, Enrichment of deuterium in insoluble organic matter from primitive meteorites: a solar system origin?, Earth Planet. Sci. Lett., 243, 15, 10.1016/j.epsl.2005.12.010
Remusat, 2009, Proto-planetary disk chemistry recorded by D-rich organic radicals in carbonaceous chondrites, Astrophys. J., 698, 2087, 10.1088/0004-637X/698/2/2087
Remusat, 2010, Accretion and preservation of D-rich organic particles in carbonaceous chondrites: evidence for important transport in the early Solar System nebula, Astrophys. J., 713, 1048, 10.1088/0004-637X/713/2/1048
Remusat, 2012, D-depleted organic matter and graphite in the Abee enstatite chondrite, Geochim. Cosmochim. Acta, 96, 319, 10.1016/j.gca.2012.07.031
Remusat, 2016, Thermal recalcitrance of the organic D-rich component of ordinary chondrites, Earth Planet. Sci. Lett., 435, 36, 10.1016/j.epsl.2015.12.009
Robert, 1982, The concentration and isotopic composition of hydrogen, carbon and nitrogen in carbonaceous meteorites, Geochim. Cosmochim. Acta, 46, 81, 10.1016/0016-7037(82)90293-9
Robert, 1987, Hydrogen isotope abundances in the solar system. Part 1: Unequilibrated chondrites, Geochim. Cosmochim. Acta, 51, 1787, 10.1016/0016-7037(87)90170-0
Roskosz, 2011, A sharp change in the mineralogy of annealed protoplanetary dust at the glass transition temperature, Astron. Astrophys., 529, 10.1051/0004-6361/201016244
Rubin, 2007, Progressive aqueous alteration of CM carbonaceous chondrites, Geochim. Cosmochim. Acta, 71, 2361, 10.1016/j.gca.2007.02.008
Rubin, 2012, Collisional facilitation of aqueous alteration of CM and CV carbonaceous chondrites, Geochim. Cosmochim. Acta, 90, 181, 10.1016/j.gca.2012.05.016
Sandford, 1991, The interstellar C-H stretching band near 3.4 microns – constraints on the composition of organic material in the diffuse interstellar medium, Astrophys. J., 371, 607, 10.1086/169925
Sandford, 2006, Organics captured from comet 81P/Wild 2 by the Stardust spacecraft, Science, 314, 1720, 10.1126/science.1135841
Schmitt-Kopplin, 2010, High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall, Proc. Natl. Acad. Sci., 107, 2763, 10.1073/pnas.0912157107
Schramm, 1989, Major element composition of stratospheric micrometeorites, Meteoritics, 24, 99, 10.1111/j.1945-5100.1989.tb00950.x
Schulze, 1997, Chemistry and mineralogy of comet Halley's dust, 397
Sekine, 2006, An experimental study on Fischer-Tropsch catalysis: implications for impact phenomena and nebular chemistry, Meteor. Planet. Sci., 41, 715, 10.1111/j.1945-5100.2006.tb00987.x
Sephton, 2001, Pyrolysis-gas chromatography-isotope ratio mass spectrometry of macromolecular material in meteorites, Planet. Space Sci., 49, 465, 10.1016/S0032-0633(00)00163-X
Sephton, 1998, δ13C of free and macromolecular aromatic structures in the Murchison meteorite, Geochim. Cosmochim. Acta, 62, 1821, 10.1016/S0016-7037(98)00108-2
Sephton, 2000, Aromatic moieties in meteoritic macromolecular materials: analyses by hydrous pyrolysis and δ13C of individual compounds, Geochim. Cosmochim. Acta, 64, 321, 10.1016/S0016-7037(99)00282-3
Sephton, 2003, Investigating the variations in carbon and nitrogen isotopes in carbonaceous chondrites, Geochim. Cosmochim. Acta, 67, 2093, 10.1016/S0016-7037(02)01320-0
Sephton, 2004, Hydropyrolysis of insoluble carbonaceous matter in the Murchison meteorite: new insights into its macromolecular structure, Geochim. Cosmochim. Acta, 68, 1385, 10.1016/j.gca.2003.08.019
Sephton, 2005, Hydropyrolysis. A new technique for the analysis of macromolecular material in meteorites, Planet. Space Sci., 53, 1280, 10.1016/j.pss.2005.06.008
Sephton, 2015, Multiple cosmic sources for meteorite macromolecules?, Astrobiology, 15, 779, 10.1089/ast.2015.1331
Sephton, 2002, Organic compounds in carbonaceous meteorites, Nat. Prod. Rep., 19, 292, 10.1039/b103775g
Sephton, 2005, Organic matter in carbonaceous meteorites: past, present and future research, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci., 363, 2729, 10.1098/rsta.2005.1670
Serra Díaz-Cano, 2008, Carbonaceous dust in interstellar shock waves: hydrogenated amorphous carbon (a-C:H) vs. graphite, Astron. Astrophys., 492, 127, 10.1051/0004-6361:200810622
Smith, 1970, Endogenous carbon in carbonaceous meteorites, Science, 167, 1367, 10.1126/science.167.3923.1367
Strazzulla, 1997, Ion irradiation: its relevance to the evolution of complex organics in the outer Solar System, Adv. Space Res., 19, 1077, 10.1016/S0273-1177(97)00356-6
Stroud, 2005, Surface and internal structure of pristine presolar silicon carbide, Lunar Planet. Sci., 36
Stroud, 2011, Supernova shock-wave-induced CO-formation of glassy carbon and nanodiamond, Astrophys. J. Lett., 738, L27, 10.1088/2041-8205/738/2/L27
Sugiura, 2014, Correlated accretion ages and e54Cr of meteorite parent bodies and the evolution of the solar nebula, Meteor. Planet. Sci., 49, 772, 10.1111/maps.12292
Thomas, 1993, Carbon abundance and silicate mineralogy of anhydrous interplanetary dust particles, Geochim. Cosmochim. Acta, 57, 1551, 10.1016/0016-7037(93)90012-L
Tonui, 2014, Petrographic, chemical and spectroscopic evidence for thermal metamorphism in carbonaceous chondrites I: CI and CM chondrites, Geochim. Cosmochim. Acta, 126, 284, 10.1016/j.gca.2013.10.053
Vinogradoff, 2015, The insoluble organic matter of the Paris CM chondrite, Meteorit. Planet. Sci. Suppl., 50
Vito, 2010, H atom irradiation of carbon grains under simulated dense interstellar medium conditions: the evolution of organics from diffuse interstellar clouds to the Solar System, Astrophys. J., 718, 867, 10.1088/0004-637X/718/2/867
Vollmer, 2014, Fluid-induced organic synthesis in the solar nebula recorded in extraterrestrial dust from meteorites, Proc. Natl. Acad. Sci., 111, 15338, 10.1073/pnas.1408206111
Wang, 2005, Molecular and compound-specific hydrogen isotope analyses of insoluble organic matter from different carbonaceous chondrites groups, Geochim. Cosmochim. Acta, 69, 3711, 10.1016/j.gca.2005.03.008
Watson, 2009, Crystalline silicates and dust processing in the protoplanetary disks of the Taurus young cluster, Astrophys. J. Suppl. Ser., 180, 84, 10.1088/0067-0049/180/1/84
Wdowiak, 1988, Insoluble organic material of the Orgueil carbonaceous chondrite and unidentified infrared bands, Astrophys. J., 328, L75, 10.1086/185163
Wirick, 2009, Organic matter from comet 81P/Wild 2, IDPs, and carbonaceous meteorites; similarities and differences, Meteor. Planet. Sci., 44, 1611, 10.1111/j.1945-5100.2009.tb01194.x
Yabuta, 2005, The solid-state 13C NMR characterization of insoluble organic matter from Antarctic CM2 chondrites: evaluation of the meteoritic alteration level, Meteor. Planet. Sci., 40, 779, 10.1111/j.1945-5100.2005.tb00979.x
Yabuta, 2007, The insoluble carbonaceous material of CM chondrites: a possible source of discrete organic compounds under hydrothermal conditions, Meteor. Planet. Sci., 42, 37, 10.1111/j.1945-5100.2007.tb00216.x
Yabuta, 2010, A molecular and isotopic study of the macromolecular organic matter of the ungrouped C2 WIS 91600 and its relationship to Tagish Lake and PCA 91008, Meteor. Planet. Sci., 45, 1446, 10.1111/j.1945-5100.2010.01117.x
Yabuta, 2012, Finding of nitrogen-rich organic material in Antarctic ultracarbonaceous micrometeorite, Lunar Planet. Sci., 43
Yang, 1983, Interstellar organic matter in meteorites, Geochim. Cosmochim. Acta, 47, 2199, 10.1016/0016-7037(83)90043-1
Zasowski, 2009, Spitzer Infrared Spectrograph observations of Class I/II objects in Taurus: composition and thermal history of the circumstellar ices, Astrophys. J., 694, 459, 10.1088/0004-637X/694/1/459
Zega, 2007, Coordinated isotopic and mineralogic analyses of planetary materials enabled by in situ lift-out with a focused ion beam scanning electron microscope, Meteor. Planet. Sci., 42, 1373, 10.1111/j.1945-5100.2007.tb00580.x
Zega, 2010, Mineral associations and character of isotopically anomalous organic material in the Tagish Lake carbonaceous chondrite, Geochim. Cosmochim. Acta, 74, 5966, 10.1016/j.gca.2010.07.018
Zolensky, 2008, Record of low-temperature alteration in asteroids, Rev. Mineral. Geochem., 68, 429, 10.2138/rmg.2008.68.15
Zolotov, 2001, Stability of condensed hydrocarbons in the solar nebula, Icarus, 150, 323, 10.1006/icar.2001.6589