The natriuretic peptide receptor agonist osteocrin disperses Pseudomonas aeruginosa biofilm

Biofilm - Tập 5 - Trang 100131 - 2023
Melissande Louis1, Ali Tahrioui1, Courtney J. Tremlett2, Thomas Clamens1, Jérôme Leprince3, Benjamin Lefranc3, Eric Kipnis4, Teddy Grandjean4, Emeline Bouffartigues1, Magalie Barreau1, Florian Defontaine1, Pierre Cornelis1, Marc G.J. Feuilloley1, Nicholas J. Harmer2, Sylvie Chevalier1, Olivier Lesouhaitier1
1Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
2Living Systems Institute, Stocker Road, University of Exeter, Exeter, EX4 4QD, UK
3PRIMACEN, University of Rouen Normandy, 76821, Mont-Saint-Aignan, France
4Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, University Lille, F-59000, Lille, France

Tài liệu tham khảo

Camara, 2022, Economic significance of biofilms: a multidisciplinary and cross-sectoral challenge, NPJ Biofilms Microbiomes, 8, 42, 10.1038/s41522-022-00306-y Martin, 2021, Approaches to targeting bacterial biofilms in cystic fibrosis airways, Int J Mol Sci, 22, 10.3390/ijms22042155 Van den Bossche, 2021, The cystic fibrosis lung microenvironment alters antibiotic activity: causes and effects, Eur Respir Rev, 30, 10.1183/16000617.0055-2021 Ciofu, 2019, Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents-how P. aeruginosa can escape antibiotics, Front Microbiol, 10, 913, 10.3389/fmicb.2019.00913 Cameron, 2022, Parallel evolution of Pseudomonas aeruginosa during a prolonged ICU-infection outbreak, Microbiol Spectr, 10.1128/spectrum.02743-22 Hoiby, 2015, ESCMID guideline for the diagnosis and treatment of biofilm infections 2014, Clin Microbiol Infect, 21, S1, 10.1016/j.cmi.2014.10.024 Ciofu, 2017, Antibiotic treatment of biofilm infections, APMIS, 125, 304, 10.1111/apm.12673 Balaban, 2019, Definitions and guidelines for research on antibiotic persistence, Nat Rev Microbiol, 17, 441, 10.1038/s41579-019-0196-3 Malhotra, 2019, Cystic fibrosis and Pseudomonas aeruginosa: the host-microbe interface, Clin Microbiol Rev, 32, 10.1128/CMR.00138-18 Guillaume, 2022, Interplay between biofilm microenvironment and pathogenicity of Pseudomonas aeruginosa in cystic fibrosis lung chronic infection, Biofilms, 4 Kolpen, 2022, Prevalence of biofilms in acute infections challenges a longstanding paradigm, Biofilms, 4 Kolpen, 2022, Bacterial biofilms predominate in both acute and chronic human lung infections, Thorax, 77, 1015, 10.1136/thoraxjnl-2021-217576 Sauer, 2022, The biofilm life cycle: expanding the conceptual model of biofilm formation, Nat Rev Microbiol, 20, 608, 10.1038/s41579-022-00767-0 Yang, 2021, Dornase alfa for cystic fibrosis, Cochrane Database Syst Rev, 3, CD001127 Heijerman, 2019, Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial, Lancet, 394, 1940, 10.1016/S0140-6736(19)32597-8 Middleton, 2019, Elexacaftor-Tezacaftor-Ivacaftor for Cystic Fibrosis with a Single Phe508del Allele, N Engl J Med, 381, 1809, 10.1056/NEJMoa1908639 Di Somma, 2020, Antimicrobial and antibiofilm peptides, Biomolecules, 10, 10.3390/biom10040652 Hancock, 2021, Antibiofilm activity of host defence peptides: complexity provides opportunities, Nat Rev Microbiol, 19, 786, 10.1038/s41579-021-00585-w Reffuveille, 2014, A broad-spectrum antibiofilm peptide enhances antibiotic action against bacterial biofilms, Antimicrob Agents Chemother, 58, 5363, 10.1128/AAC.03163-14 Wille, 2020, Biofilm dispersion: the key to biofilm eradication or opening Pandora's box?, Biofilms, 2 Pane, 2018, Identification of novel cryptic multifunctional antimicrobial peptides from the human stomach enabled by a computational-experimental platform, ACS Synth Biol, 7, 2105, 10.1021/acssynbio.8b00084 Torres, 2021, Synthetic biology and computer-based frameworks for antimicrobial peptide discovery, ACS Nano, 15, 2143, 10.1021/acsnano.0c09509 Cesaro, 2022, Synthetic antibiotic derived from sequences encrypted in a protein from human plasma, ACS Nano, 16, 1880, 10.1021/acsnano.1c04496 Torres, 2022, Mining for encrypted peptide antibiotics in the human proteome, Nat Biomed Eng, 6, 67, 10.1038/s41551-021-00801-1 Lyte, 2004, Microbial endocrinology and infectious disease in the 21st century, Trends Microbiol, 12, 14, 10.1016/j.tim.2003.11.004 Lesouhaitier, 2009, Gram-negative bacterial sensors for eukaryotic signal molecules, Sensors, 9, 6967, 10.3390/s90906967 Kumar, 2019, Indole signaling at the host-microbiota-pathogen interface, mBio, 10, 10.1128/mBio.01031-19 Lesouhaitier, 2019, Host peptidic hormones affecting bacterial biofilm formation and virulence, J Innate Immun, 11, 227, 10.1159/000493926 Kumar, 2020, The serotonin neurotransmitter modulates virulence of enteric pathogens, Cell Host Microbe, 28, 41, 10.1016/j.chom.2020.05.004 Garcia-Contreras, 2013, Resistance to quorum-quenching compounds, Appl Environ Microbiol, 79, 6840, 10.1128/AEM.02378-13 Bove, 2021, The quorum-sensing inhibitor furanone C-30 rapidly loses its tobramycin-potentiating activity against Pseudomonas aeruginosa biofilms during experimental evolution, Antimicrob Agents Chemother, 65, 10.1128/AAC.00413-21 Wu, 2005, Recognition of host immune activation by Pseudomonas aeruginosa, Science, 309, 774, 10.1126/science.1112422 Zaborina, 2007, Dynorphin activates quorum sensing quinolone signaling in Pseudomonas aeruginosa, PLoS Pathog, 3, e35, 10.1371/journal.ppat.0030035 Chotirmall, 2012, Effect of estrogen on pseudomonas mucoidy and exacerbations in cystic fibrosis, N Engl J Med, 366, 1978, 10.1056/NEJMoa1106126 Scardaci, 2022, Norepinephrine and serotonin can modulate the behavior of the probiotic Enterococcus faecium NCIMB10415 towards the host: is a putative surface sensor involved?, Microorganisms, 10, 10.3390/microorganisms10030487 Rosay, 2015, Pseudomonas aeruginosa expresses a functional human natriuretic peptide receptor ortholog: involvement in biofilm formation, mBio, 6, 10.1128/mBio.01033-15 Desriac, 2018, Different dose-dependent modes of action of C-type natriuretic peptide on Pseudomonas aeruginosa biofilm formation, Pathogens, 7, 10.3390/pathogens7020047 Louis, 2022, Pseudomonas aeruginosa biofilm dispersion by the human atrial natriuretic peptide, Adv Sci, 9, 10.1002/advs.202103262 Potter, 2006, Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions, Endocr Rev, 27, 47, 10.1210/er.2005-0014 Potter, 2011, Natriuretic peptide metabolism, clearance and degradation, FEBS J, 278, 1808, 10.1111/j.1742-4658.2011.08082.x Moffatt, 2009, Osteocrin--beyond just another bone protein?, Cell Mol Life Sci, 66, 1135, 10.1007/s00018-009-8716-3 Thomas, 2003, Osteocrin, a novel bone-specific secreted protein that modulates the osteoblast phenotype, J Biol Chem, 278, 50563, 10.1074/jbc.M307310200 Nishizawa, 2004, Musclin, a novel skeletal muscle-derived secretory factor, J Biol Chem, 279, 19391, 10.1074/jbc.C400066200 Miyazaki, 2018, A new secretory peptide of natriuretic peptide family, osteocrin, suppresses the progression of congestive heart failure after myocardial infarction, Circ Res, 122, 742, 10.1161/CIRCRESAHA.117.312624 Yasoda, 2022, Physiological and pathophysiological effects of C-type natriuretic peptide on the heart, Biology, 11, 10.3390/biology11060911 Rahme, 1995, Common virulence factors for bacterial pathogenicity in plants and animals, Science, 268, 1899, 10.1126/science.7604262 Liberati, 2006, An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants, Proc Natl Acad Sci U S A, 103, 2833, 10.1073/pnas.0511100103 Hancock, 1979, Outer membrane of Pseudomonas aeruginosa: heat- 2-mercaptoethanol-modifiable proteins, J Bacteriol, 140, 902, 10.1128/jb.140.3.902-910.1979 Takeya, 1966, A rod-shaped Pseudomonas phage, Virology, 28, 163, 10.1016/0042-6822(66)90317-5 Boukerb, 2020, Draft genome sequences of four Pseudomonas aeruginosa clinical strains with various biofilm phenotypes, Microbiol Resour Announc, 9, 10.1128/MRA.01286-19 Grandjean, 2018, Draft genome sequences of two Pseudomonas aeruginosa multidrug-resistant clinical isolates, PAL0.1 and PAL1.1, Microbiol Resour Announc, 7, 10.1128/MRA.00940-18 Touchard, 2020, Venom peptide repertoire of the European myrmicine ant manica rubida: identification of insecticidal toxins, J Proteome Res, 19, 1800, 10.1021/acs.jproteome.0c00048 Tolker-Nielsen, 2011, Growing and analyzing biofilms in flow chambers, Curr Protoc Microbiol, 1 Heydorn, 2000, Quantification of biofilm structures by the novel computer program COMSTAT, Microbiology (Read), 146, 2395, 10.1099/00221287-146-10-2395 Jumper, 2021, Highly accurate protein structure prediction with AlphaFold, Nature, 596, 583, 10.1038/s41586-021-03819-2 van Zundert, 2016, The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes, J Mol Biol, 428, 720, 10.1016/j.jmb.2015.09.014 Honorato, 2021, Structural biology in the clouds: the WeNMR-EOSC ecosystem, Front Mol Biosci, 8, 10.3389/fmolb.2021.729513 Eberhardt, 2021, AutoDock Vina 1.2.0: new docking methods, expanded force field, and Python bindings, J Chem Inf Model, 61, 3891, 10.1021/acs.jcim.1c00203 Kelley, 2015, The Phyre2 web portal for protein modeling, prediction and analysis, Nat Protoc, 10, 845, 10.1038/nprot.2015.053 Wallace, 1995, LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions, Protein Eng, 8, 127, 10.1093/protein/8.2.127 Baker, 2001, Electrostatics of nanosystems: application to microtubules and the ribosome, Proc Natl Acad Sci U S A, 98, 10037, 10.1073/pnas.181342398 Dominguez, 2003, HADDOCK: a protein-protein docking approach based on biochemical or biophysical information, J Am Chem Soc, 125, 1731, 10.1021/ja026939x Pearl, 1994, Crystal structure of AmiC: the controller of transcription antitermination in the amidase operon of Pseudomonas aeruginosa, EMBO J, 13, 5810, 10.1002/j.1460-2075.1994.tb06924.x Nishida, 2021, Natriuretic peptide receptor-C releases and activates guanine nucleotide-exchange factor H1 in a ligand-dependent manner, Biochem Biophys Res Commun, 552, 9, 10.1016/j.bbrc.2021.03.028 O'Hara, 1999, Crystal structure and induction mechanism of AmiC-AmiR: a ligand-regulated transcription antitermination complex, EMBO J, 18, 5175, 10.1093/emboj/18.19.5175 Dingemans, 2016, Effect of shear stress on Pseudomonas aeruginosa isolated from the cystic fibrosis lung, mBio, 7, 10.1128/mBio.00813-16 King, 2022, Pseudomonas aeruginosa in the cystic fibrosis lung, Adv Exp Med Biol, 1386, 347, 10.1007/978-3-031-08491-1_13 Wilson, 1991, Cloning and DNA sequence of amiC, a new gene regulating expression of the Pseudomonas aeruginosa aliphatic amidase, and purification of the amiC product, J Bacteriol, 173, 4914, 10.1128/jb.173.16.4914-4921.1991 Wilson, 1993, Antitermination of amidase expression in Pseudomonas aeruginosa is controlled by a novel cytoplasmic amide-binding protein, EMBO J, 12, 3637, 10.1002/j.1460-2075.1993.tb06037.x Winsor, 2016, Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database, Nucleic Acids Res, 44, D646, 10.1093/nar/gkv1227 Jouault, 2020, Alterocin, an antibiofilm protein secreted by pseudoalteromonas sp. strain 3J6, Appl Environ Microbiol, 86, 10.1128/AEM.00893-20