The nanostructure of the cell wall of softwoods and its functions in a living tree

R. E. Booker1, J. Sell2
1Wood Processing Division, New Zealand Forest Research Institute, Rotorua, New Zealand
2Wood Dept, Swiss Federal Laboratories for Materials Testing and Research, Dübendorf, Switzerland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abe H, Ohtani J, Fukuzawa K (1991) FE-SEM observations on the microfibrillar orientation in the secondary wall of tracheids, IAWA bull. n.s. 12(4): 431–438

Barber NF, Meylan BA (1964) The anisotropic shrinkage of wood, Holzforschung 18: 146–156

Bailey IW (1938) Cell wall structure of higher plants. Industrial Eng. Chem. 30: 40–47

Booker RE (1993) The importance of the S3 cell wall layer in collapse and wood hardness. Proceedings of the 24th Forest Products Research Conference, 15–18 November 1993, CSIRO Division of Forest Products, Clayton, Victoria, Australia. 3/17, 1–13

Booker RE (1995) The reason for the microfibril orientations in the cell walls of trees. Recent Advances in Wood Anatomy, Eds, L.A. Donaldson, A.P. Singh, B.G. Butterfield, J. Whitehouse. NZ Forest Research Institute Ltd, 273–282

Braun HJ (1992) Bau und Leben der Bäume. (3rd edn). Verlag Rombach, Freiburg

Cave ID (1968) The anisotropic elasticity of the plant cell wall. Wood Sci Technol. 2(4): 268–278

Cave ID (1969) The longitudinal modulus ofPinus radiata. Wood Sci. Technol. 3: 40–48

Cave ID (1978) Modelling moisture-related mechanical properties of wood. Part 2: Computation of properties of a model of wood and comparison with experimental data. Wood Sci, Techn. 12: 127–139

Cave ID, Walker JCF (1994) Stiffness of wood in fast-grown plantation softwoods: the influence of microfibril angle. For. Prod. Journal, 44(5): 43–48

Chafe SC (1974) On the lamellate structure of the S2 layer. Protoplasma 79: 144–158

Chafe SC (1977) Radial dislocations in the fibre wall ofEucalyptus regnans trees of high growth stress. Wood Sci. Technol. 11: 69–77

Core HA, Coté WA, Day AC (1979) Wood Structure and Identification (2nd edn.), Syracuse University Press, Syracuse, N.Y.

Côté WA (1968) The structure of wood and the wood cell wall. In: Kollmann, F.F.R., Côté, W.A. Principles of Wood Science and Technology. Vol 1: Solid Wood. Springer-Verlag, New York

Donaldson L (1992) Within- and between-tree variation in microfibril angle inPinus radiata. NZ J. For. Sci. 22: 77–86

Donaldson L (1996) Clonal variation in the fracture properties of radiata pine wood. Recent Advances in Wood Anatomy, Eds. L.A. Donaldson, A.P. Singh, B.G. Butterfield, J. Whitehouse. NZ Forest Research Institute Ltd, 283–291

Fujita M, Harada H (1991) Ultrastructure and Formation of Wood. In: Hon, D.N.S., Shiraishi N. (Ed.). Wood and Cellulosic Chemistry. Marcel Dekker Inc. New York and Basel

Kerr AJ, Goring DAI (1975) The ultrastructural arrangement of the wood cell wall. Cellul. Chem. Technol. 9, 563–573

Harada HY, Côté WA (1985) Structure of Wood. In: Biosynthesis and biodegradation of wood components (ed. T. Higuchi): 1–42. Acad. Press, Orlando

Larsen UJ, Winandy JE, Green F (1995) A proposed model of the tracheid cell wall of Southern yellow pine having an inherent radial structure in the S2 layer. Mater. & Organismen 29(3): 197–209

Liese W (1970) Elektronenmikroskopie des Holzes. In: Freund, FL Handbuch der Mikroskopie in der Technik. Vol 1, Part 1. Umschau-Verlag, Frankfurt a.M.

Mark RE (1967) Cell wall mechanics of tracheids. Yale University Press, New Haven

Mattheck C (1991) Trees, the mechanical design. Springer Verlag, Berlin

Meidner H, Sheriff DW (1976) Water and Plants. Tertiary biology series, Blackie, London

Parham RA, Coté WA (1971) Distribution of lignin in normal and compression wood ofPinus taeda L. Wood Sci. Technol. 5: 49–62

Revol JF, Gancet C, Goring DAI (1982) Orientation of cellulose crystallisation in the S2 layer of spruce and birch wood cells. Wood Sci. 14(3): 120–126

Ruel K, Barnoud F, Goring DAI (1978) Lamellation in the S2 layer of softwood tracheids as demonstrated by scanning transmission electron microscopy. Wood Sci. Technol. 12: 287–291

Scallan AM (1974) The structure of the cell wall of wood — a consequence of anisotropic inter-microfibrillar bonding Wood Sci. 6: 266–271

Schwarze FWMR, Engels J (1997) Cavity formation and the exposure of peculiar structures in the secondary wall (S2) of tracheids and fibres by wood degrading basidiomycetes. Holzforschung. (In press)

Sell J (1994a) Mechanical aspects of new SEM observations on the fibril/matrix structure of the S2 layer of softwood tracheids. Proceedings Congress “Plant Biomechanics”, Montpellier, France. September 1994, pp 163–164

Sell J (1994b) Confirmation of a sandwich-like model of the cell wall of softwoods by light microscope. Holz Roh-Werkstoff57: 234

Sell J, Zimmermann T (1993a) The structure of the cell wall layer S2-field-emission SEM studies on transverse-fracture surfaces of the wood of spruce and white fir. Forsch, u. Arbeitsberichte EMPA — Abt. Holz, No. 115/28. (German with English Abstract)

Sell J, Zimmermann T (1993b) Radial fibril agglomerations of the S2 on transverse fracture surfaces of tracheids of tension-loaded spruce and white fir. Holz Roh-Werkstoff 51: 384

Singh A (1996) Ultrastructural features of compression wood cells in relation to bacterial decay inPinus radiata. Recent Advances in Wood Anatomy, Eds. L.A. Donaldson, A.P. Singh, B.G. Butterfield, J. Whitehouse. NZ Forest Research Institute Ltd, 400–407

Stone JE, Scallan AM, Ahlgren PAV (1971) The ultrastructural distribution of lignin in tracheid cell walls. Tappi 54: 1527–1530

Wardrop AB (1954) The fine structure of the conifer tracheid. Holzforschung 8: 12–29

Zimmermann T, Sell J (1997) The fine structure of the cell wail on transverse fracture surfaces of longitudinally tension-loaded hardwoods. Research & Work Reports, EMPA-Dept Wood, No. 115/35, 32 p