The ‘mustard oil bomb’: not so easy to assemble?! Localization, expression and distribution of the components of the myrosinase enzyme system

Ralph Kissen1, John T. Rossiter2, Atle M. Bones1
1Department of Biology, Norwegian University of Science and Technology (NTNU), Realfagbygget Høgskoleringen 5, 7491, Trondheim, Norway
2Division of Biology, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, Kensington, SW7 2AZ, London, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Akoh CC, Lee GC, Liaw YC et al (2004) GDSL family of serine esterases/lipases. Prog Lipid Res 43:534–552. doi: 10.1016/j.plipres.2004.09.002

Alvarez S, He Y, Chen S (2008) Comparative investigations of the glucosinolate-myrosinase system in Arabidopsis suspension cells and hypocotyls. Plant Cell Physiol 49:324–333. doi: 10.1093/pcp/pcn007

Andersson D, Chakrabarty R, Zhang J et al (2004) A new myrosinase gene family in Arabidopsis thaliana. In: Abstracts of the 15th International Conference on Arabidopsis Research, Berlin, 11–14 July 2004

Andreasson E, Jørgensen LB (2003) Localization of plant myrosinases and glucosinolates. In: Romeo JT (ed) Integrative phytochemistry: from ethnobotany to molecular ecology. Recent advances in phytochemistry, vol 37. Elsevier, Amsterdam, pp 79–99

Andreasson E, Taipalensuu J, Rask L et al (1999) Age-dependent wound induction of a myrosinase associated protein from oilseed rape (Brassica napus). Plant Mol Biol 41:171–180. doi: 10.1023/A:1006364607564

Andreasson E, Jørgensen LB, Höglund AS et al (2001a) Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus. Plant Physiol 127:1750–1763. doi: 10.1104/pp.127.4.1750

Andreasson E, Wretblad S, Granér G et al (2001b) The myrosinase-glucosinolate system in the interaction between Leptosphaeria maculans and Brassica napus. Mol Plant Pathol 2:281–286. doi: 10.1046/j.1464-6722.2001.00076.x

Barth C, Jander G (2006) Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense. Plant J 46:549–562. doi: 10.1111/j.1365-313X.2006.02716.x

Bellostas N, Petersen IL, Sorensen JC et al (2008) A fast and gentle method for the isolation of myrosinase complexes from Brassicaceous seeds. J Biochem Biophys Methods 70:918–925. doi: 10.1016/j.jprot.2007.11.006

Bernardi R, Negri A, Ronchi S et al (2000) Isolation of the epithiospecifier protein from oil-rape (Brassica napus ssp oleifera) seed and its characterization. FEBS Lett 467:296–298. doi: 10.1016/S0014-5793(00)01179-0

Björkman R, Janson J-C (1972) Studies on myrosinases I. Purification and characterization of a myrosinase from white mustard seed (Sinapis alba, L.). Biochim Biophys Acta 276:508–518

Björkman R, Lönnerdal B (1973) Studies on myrosinases III. Enzymatic properties of myrosinases from Sinapis alba and Brassica napus seeds. Biochim Biophys Acta 327:121–131

Bones AM (1990) Distribution of β-thioglucosidase activity in intact plants, cell and tissue cultures and regenerant plants of Brassica napus L. J Exp Bot 41:737–744. doi: 10.1093/jxb/41.6.737

Bones AM, Iversen T-H (1985) Myrosin cells and myrosinase. Isr J Bot 34:351–375

Bones AM, Rossiter JT (1996) The myrosinase-glucosinolate system, its organisation and biochemistry. Physiol Plant 97:194–208. doi: 10.1111/j.1399-3054.1996.tb00497.x

Bones AM, Rossiter JT (2006) The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry 67:1053–1067. doi: 10.1016/j.phytochem.2006.02.024

Bones A, Slupphaug G (1989) Purification, characterization and partial amino acid sequencing of β-thioglucosidase from Brassica napus L. J Plant Physiol 134:722–729

Bones AM, Thangstad OP, Haugen OA et al (1991) Fate of myrosin cells: characterization of monoclonal antibodies against myrosinase. J Exp Bot 42:1541–1550. doi: 10.1093/jxb/42.12.1541

Bones AM, Visvalingam S, Thangstad OP (1994) Sulfate can induce differential expression of thioglucoside glucohydrolases (myrosinases). Planta 193:558–566. doi: 10.1007/BF02411562

Brader G, Mikkelsen MD, Halkier BA et al (2006) Altering glucosinolate profiles modulates disease resistance in plants. Plant J 46:758–767. doi: 10.1111/j.1365-313X.2006.02743.x

Bridges M, Jones AME, Bones AM et al (2002) Spatial organization of the glucosinolate-myrosinase system in brassica specialist aphids is similar to that of the host plant. Proc R Soc Lond B Biol Sci 269:187–191. doi: 10.1098/rspb.2001.1861

Brown PD, Tokuhisa JG, Reichelt M et al (2003) Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 62:471–481. doi: 10.1016/S0031-9422(02)00549-6

Burow M, Wittstock U (2008) Regulation and function of specifier proteins in plants. Phytochem Rev (this issue). doi: 10.1007/s11101-008-9113-5

Burow M, Bergner A, Gershenzon J et al (2007a) Glucosinolate hydrolysis in Lepidium sativum—identification of the thiocyanate-forming protein. Plant Mol Biol 63:49–61. doi: 10.1007/s11103-006-9071-5

Burow M, Rice M, Hause B et al (2007b) Cell and tissue-specific localization and regulation of the epithiospecifier protein in Arabidopsis thaliana. Plant Mol Biol 64:173–185. doi: 10.1007/s11103-007-9143-1

Capella AN, Menossi M, Arruda P et al (2001) COI1 affects myrosinase activity and controls the expression of two flower-specific myrosinase-binding protein homologues in Arabidopsis. Planta 213:691–699. doi: 10.1007/s004250100548

Carter C, Pan SQ, Jan ZH et al (2004) The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell 16:3285–3303. doi: 10.1105/tpc.104.027078

Casasoli M, Meliciani I, Cervone F et al (2007) Oligogalacturonide-induced changes in the nuclear proteome of Arabidopsis thaliana. Int J Mass Spectrom 268:277–283. doi: 10.1016/j.ijms.2007.07.007

Chadchawan S, Bishop J, Thangstad OP et al (1993) Arabidopsis cDNA sequence encoding myrosinase. Plant Physiol 103:671–672. doi: 10.1104/pp.103.2.671

Chen S, Collum RP, Sarry JE et al (2006) Vacuolar proteomics revealed important properties of the myrosinase-glucosinolate system. In: Abstracts of the First International Conference on Glucosinolates, Jena, 10–14 September 2006

Daxenbichler ME, Spencer GF, Carlson DG et al (1991) Glucosinolate composition of seeds from 297 species of wild plants. Phytochemistry 30:2623–2638. doi: 10.1016/0031-9422(91)85112-D

Eriksson S, Ek B, Xue J et al (2001) Identification and characterization of soluble and insoluble myrosinase isoenzymes in different organs of Sinapis alba. Physiol Plant 111:353–364. doi: 10.1034/j.1399-3054.2001.1110313.x

Eriksson S, Andreasson E, Ekbom B et al (2002) Complex formation of myrosinase isoenzymes in oilseed rape seeds are dependent on the presence of myrosinase-binding proteins. Plant Physiol 129:1592–1599. doi: 10.1104/pp.003285

Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51. doi: 10.1016/S0031-9422(00)00316-2

Falk A, Xue JP, Lenman M et al (1992) Sequence of a cDNA clone encoding the enzyme myrosinase and expression of myrosinase in different tissues of Brassica napus. Plant Sci 83:181–186. doi: 10.1016/0168-9452(92)90077-Y

Falk A, Ek B, Rask L (1995a) Characterization of a new myrosinase in Brassica napus. Plant Mol Biol 27:863–874. doi: 10.1007/BF00037015

Falk A, Taipalensuu J, Ek B et al (1995b) Characterization of rapeseed myrosinase-binding protein. Planta 195:387–395. doi: 10.1007/BF00202596

Fimognari C, Hrelia P (2007) Sulforaphane as a promising molecule for fighting cancer. Mutat Res–Rev Mut Res 635:90–104

Foo HL, Gronning LM, Goodenough L et al (2000) Purification and characterisation of epithiospecifier protein from Brassica napus: enzymic intramolecular sulphur addition within alkenyl thiohydroximates derived from alkenyl glucosinolate hydrolysis. FEBS Lett 468:243–246. doi: 10.1016/S0014-5793(00)01176-5

Gallardo K, Job C, Groot SPC et al (2001) Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol 126:835–848. doi: 10.1104/pp.126.2.835

Geshi N, Brandt A (1998) Two jasmonate-inducible myrosinase-binding proteins from Brassica napus L. seedlings with homology to jacalin. Planta 204:295–304. doi: 10.1007/s004250050259

Geshi N, Andreasson E, Meijer J et al (1998) Co-localization of myrosinase- and myrosinase-binding proteins in grains of myrosin cells in cotyledon of Brassica napus seedlings. Plant Physiol Biochem 36:583–590. doi: 10.1016/S0981-9428(98)80006-5

Gigolashvili T, Berger B, Mock HP et al (2007a) The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. Plant J 50:886–901. doi: 10.1111/j.1365-313X.2007.03099.x

Gigolashvili T, Yatusevich R, Berger B et al (2007b) The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. Plant J 51:247–261. doi: 10.1111/j.1365-313X.2007.03133.x

Grob K, Matile P (1979) Vacuolar location of glucosinolates in horseradish root cells. Plant Sci Lett 14:327–335. doi: 10.1016/S0304-4211(79)90281-5

Grubb CD, Abel S (2006) Glucosinolate metabolism and its control. Trends Plant Sci 11:89–100. doi: 10.1016/j.tplants.2005.12.006

Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333. doi: 10.1146/annurev.arplant.57.032905.105228

Hansen BG, Kliebenstein DJ, Halkier BA (2007) Identification of a flavin-monooxygenase as the S-oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis. Plant J 50:902–910. doi: 10.1111/j.1365-313X.2007.03101.x

Hara M, Fujii Y, Sasada Y et al (2000) cDNA cloning of radish (Raphanus sativus) myrosinase and tissue-specific expression in root. Plant Cell Physiol 41:1102–1109. doi: 10.1093/pcp/pcd034

Hara M, Eto H, Kuboi T (2001) Tissue printing for myrosinase activity in roots of turnip and Japanese radish and horseradish: a technique for localizing myrosinases. Plant Sci 160:425–431. doi: 10.1016/S0168-9452(00)00400-3

Helmlinger J, Rausch T, Hilgenberg W (1983) Localization of newly synthesized indole-3-methylglucosinolate (=glucobrassicin) in vacuoles from horseradish (Armoracia rusticana). Physiol Plant 58:302–310. doi: 10.1111/j.1399-3054.1983.tb04185.x

Höglund A-S, Lenman M, Falk A et al (1991) Distribution of myrosinase in rapeseed tissues. Plant Physiol 95:213–221

Höglund A-S, Lenman M, Rask L (1992) Myrosinase is localized to the interior of myrosin grains and is not associated to the surrounding tonoplast membrane. Plant Sci 85:165–170. doi: 10.1016/0168-9452(92)90112-Y

Holst B, Williamson G (2004) A critical review of the bioavailability of glucosinolates and related compounds. Nat Prod Rep 21:425–447. doi: 10.1039/b204039p

Husebye H, Chadchawan S, Winge P et al (2002) Guard cell- and phloem idioblast-specific expression of thioglucoside glucohydrolase 1 (myrosinase) in Arabidopsis. Plant Physiol 128:1180–1188. doi: 10.1104/pp.010925

Huttlin EL, Hegeman AD, Harms AC et al (2007) Comparison of full versus partial metabolic labeling for quantitative proteomics analysis in Arabidopsis thaliana. Mol Cell Proteomics 6:860–881. doi: 10.1074/mcp.M600347-MCP200

James DC, Rossiter JT (1991) Development and characteristics of myrosinase in Brassica napus during early seedling growth. Physiol Plant 82:163–170. doi: 10.1111/j.1399-3054.1991.tb00076.x

Jaquinod M, Villiers F, Kieffer-Jaquinod S et al (2007) A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture. Mol Cell Proteomics 6:394–412. doi: 10.1074/mcp.M600250-MCP200

Jost R, Altschmied L, Bloem E et al (2005) Expression profiling of metabolic genes in response to methyl jasmonate reveals regulation of genes of primary and secondary sulfur-related pathways in Arabidopsis thaliana. Photosynth Res 86:491–508. doi: 10.1007/s11120-005-7386-8

Kazana E, Pope TW, Tibbles L et al (2007) The cabbage aphid: a walking mustard oil bomb. Proc R Soc Lond B Biol Sci 274:2271–2277. doi: 10.1098/rspb.2007.0237

Kelly PJ, Bones A, Rossiter JT (1998) Sub-cellular immunolocalization of the glucosinolate sinigrin in seedlings of Brassica juncea. Planta 206:370–377. doi: 10.1007/s004250050412

Koroleva OA, Davies A, Deeken R et al (2000) Identification of a new glucosinolate-rich cell type in Arabidopsis flower stalk. Plant Physiol 124:599–608. doi: 10.1104/pp.124.2.599

Lambrix V, Reichelt M, Mitchell-Olds T et al (2001) The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory. Plant Cell 13:2793–2807

Lenman M, Rödin J, Josefsson L-G et al (1990) Immunological characterization of rapeseed myrosinase. Eur J Biochem 194:747–753. doi: 10.1111/j.1432-1033.1990.tb19465.x

Lenman M, Falk A, Rodin J et al (1993a) Differential expression of myrosinase gene families. Plant Physiol 103:703–711. doi: 10.1104/pp.103.3.703

Lenman M, Falk A, Xue JP et al (1993b) Characterization of a Brassica napus myrosinase pseudogene: myrosinases are members of the BGA family of β-glycosidases. Plant Mol Biol 21:463–474. doi: 10.1007/BF00028804

Lönnerdal B, Janson J-C (1973) Studies on myrosinases II. Purification and characterization of a myrosinase from rapeseed (Brassica napus L.). Biochim Biophys Acta 315:421–429

Luthy B, Matile P (1984) The mustard oil bomb: rectified analysis of the subcellular organization of the myrosinase system. Biochem Physiol Pflanz 179:5–12

Matile P (1980) “Die Senfölbombe”: Zur Kompartimentierung des Myrosinasesystems. Biochem Physiol Pflanz 175:722–731

Matsushima R, Hayashi Y, Yamada K et al (2003) The ER body, a novel endoplasmic reticulum-derived structure in Arabidopsis. Plant Cell Physiol 44:661–666. doi: 10.1093/pcp/pcg089

Matsushima R, Fukao Y, Nishimura M et al (2004) NAI1 gene encodes a basic-helix-loop-helix-type putative transcription factor that regulates the formation of an endoplasmic reticulum-derived structure, the ER body. Plant Cell 16:1536–1549. doi: 10.1105/tpc.021154

Matusheski NV, Swarup R, Juvik JA et al (2006) Epithiospecifier protein from broccoli (Brassica oleracea L. ssp italica) inhibits formation of the anticancer agent sulforaphane. J Agric Food Chem 54:2069–2076. doi: 10.1021/jf0525277

Miao Y, Zentgraf U (2007) The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. Plant Cell 19:819–830. doi: 10.1105/tpc.106.042705

Müller C, Agerbirk N, Olsen CE et al (2001) Sequestration of host plant glucosinolates in the defensive hemolymph of the sawfly Athalia rosae. J Chem Ecol 27:2505–2516. doi: 10.1023/A:1013631616141

Nikiforova V, Freitag J, Kempa S et al (2003) Transcriptome analysis of sulfur depletion in Arabidopsis thaliana: interlacing of biosynthetic pathways provides response specificity. Plant J 33:633–650. doi: 10.1046/j.1365-313X.2003.01657.x

Nitz I, Berkefeld H, Puzio PS et al (2001) Pyk10, a seedling and root specific gene and promoter from Arabidopsis thaliana. Plant Sci 161:337–346. doi: 10.1016/S0168-9452(01)00412-5

Rask L, Andreasson E, Ekbom B et al (2000) Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol Biol 42:93–113. doi: 10.1023/A:1006380021658

Ratzka A, Vogel H, Kliebenstein DJ et al (2002) Disarming the mustard oil bomb. Proc Natl Acad Sci USA 99:11223–11228. doi: 10.1073/pnas.172112899

Reumann S, Babujee L, Ma CL et al (2007) Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms. Plant Cell 19:3170–3193. doi: 10.1105/tpc.107.050989

Rizhsky L, Liang HJ, Shuman J et al (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696. doi: 10.1104/pp.103.033431

Shelton AL (2005) Within-plant variation in glucosinolate concentrations of Raphanus sativus across multiple scales. J Chem Ecol 31:1711–1732. doi: 10.1007/s10886-005-5922-9

Shimaoka T, Ohnishi M, Sazuka T et al (2004) Isolation of intact vacuoles and proteomic analysis of tonoplast from suspension-cultured cells of Arabidopsis thaliana. Plant Cell Physiol 45:672–683. doi: 10.1093/pcp/pch099

Taipalensuu J, Falk A, Rask L (1996) A wound- and methyl jasmonate-inducible transcript coding for a myrosinase-associated protein with similarities to an early nodulin. Plant Physiol 110:483–491. doi: 10.1104/pp.110.2.483

Taipalensuu J, Andreasson E, Eriksson S et al (1997a) Regulation of the wound-induced myrosinase-associated protein transcript in Brassica napus plants. Eur J Biochem 247:963–971. doi: 10.1111/j.1432-1033.1997.00963.x

Taipalensuu J, Eriksson S, Rask L (1997b) The myrosinase-binding protein from Brassica napus seeds possesses lectin activity and has a highly similar vegetatively expressed wound-inducible counterpart. Eur J Biochem 250:680–688. doi: 10.1111/j.1432-1033.1997.00680.x

Taipalensuu J, Falk A, Ek B et al (1997c) Myrosinase-binding proteins are derived from a large wound-inducible and repetitive transcript. Eur J Biochem 243:605–611. doi: 10.1111/j.1432-1033.1997.t01-1-00605.x

Takechi K, Sakamoto W, Utsugi S et al (1999) Characterization of a flower-specific gene encoding a putative myrosinase binding protein in Arabidopsis thaliana. Plant Cell Physiol 40:1287–1296

Thangstad OP, Iversen T-H, Slupphaug G et al (1990) Immunocytochemical localization of myrosinase in Brassica napus L. Planta 180:245–248. doi: 10.1007/BF00194003

Thangstad OP, Evjen K, Bones A (1991) Immunogold-EM localization of myrosinase in Brassicaceae. Protoplasma 161:85–93. doi: 10.1007/BF01322721

Thangstad OP, Winge P, Husebye H et al (1993) The myrosinase (thioglucoside glucohydrolase) gene family in Brassicaceae. Plant Mol Biol 23:511–524. doi: 10.1007/BF00019299

Thangstad OP, Bones AM, Holton S et al (2001) Microautoradiographic localisation of a glucosinolate precursor to specific cells in Brassica napus L. embryos indicates a separate transport pathway into myrosin cells. Planta 213:207–213. doi: 10.1007/s004250000491

Thangstad OP, Gilde B, Chadchawan S et al (2004) Cell specific, cross-species expression of myrosinases in Brassica napus, Arabidopsis thaliana and Nicotiana tabacum. Plant Mol Biol 54:597–611. doi: 10.1023/B:PLAN.0000038272.99590.10

Toufighi K, Brady SM, Austin R et al (2005) The botany array resource: e-northerns, expression angling, and promoter analyses. Plant J 43:153–163. doi: 10.1111/j.1365-313X.2005.02437.x

Ueda H, Nishiyama C, Shimada T et al (2006) AtVAM3 is required for normal specification of idioblasts, myrosin cells. Plant Cell Physiol 47:164–175. doi: 10.1093/pcp/pci232

Velasco P, Cartea ME, Gonzalez C et al (2007) Factors affecting the glucosinolate content of kale (Brassica oleracea acephala group). J Agric Food Chem 55:955–962. doi: 10.1021/jf0624897

Wittstock U, Kliebenstein DJ, Lambrix V et al (2003) Glucosinolate hydrolysis and its impact on generalist and specialist insect herbivores. In: Romeo JT (ed) Integrative phytochemistry: from ethnobotany to molecular ecology. Recent advances in phytochemistry, vol 37. Elsevier, Amsterdam, pp 101–125

Wittstock U, Agerbirk N, Stauber EJ et al (2004) Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc Natl Acad Sci USA 101:4859–4864. doi: 10.1073/pnas.0308007101

Xu ZW, Escamilla-Trevino LL, Zeng LH et al (2004) Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 1. Plant Mol Biol 55:343–367. doi: 10.1007/s11103-004-0790-1

Xue J, Lenman M, Falk A et al (1992) The glucosinolate-degrading enzyme myrosinase in Brassicaceae is encoded by a gene family. Plant Mol Biol 18:387–398. doi: 10.1007/BF00034965

Xue J, Pihlgren U, Rask L (1993) Temporal, cell-specific, and tissue-preferential expression of myrosinase genes during embryo and seedling development in Sinapis alba. Planta 191:95–101. doi: 10.1007/BF00240900

Xue J, Jørgensen M, Pihlgren U et al (1995) The myrosinase gene family in Arabidopsis thaliana: gene organization, expression and evolution. Plant Mol Biol 27:911–922. doi: 10.1007/BF00037019

Yan XF, Chen SX (2007) Regulation of plant glucosinolate metabolism. Planta 226:1343–1352. doi: 10.1007/s00425-007-0627-7

Yiu SH, Collins FW, Fulcher RG et al (1984) Chromatographic and microscopic detection of glucosinolates in rapeseed using N, 2, 6-trichloro-para-benzoquinoneimine. Can J Plant Sci 64:869–878

Zabala MD, Grant M, Bones AM et al (2005) Characterisation of recombinant epithiospecifier protein and its over-expression in Arabidopsis thaliana. Phytochemistry 66:859–867. doi: 10.1016/j.phytochem.2005.02.026

Zhang JM, Pontoppidan B, Xue JP et al (2002) The third myrosinase gene TGG3 in Arabidopsis thaliana is a pseudogene specifically expressed in stamen and petal. Physiol Plant 115:25–34. doi: 10.1034/j.1399-3054.2002.1150103.x

Zhang ZY, Ober JA, Kliebenstein DJ (2006) The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis. Plant Cell 18:1524–1536. doi: 10.1105/tpc.105.039602

Zimmermann P, Hirsch-Hoffmann M, Hennig L et al (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632. doi: 10.1104/pp.104.046367