The multifaceted effects of YTHDC1-mediated nuclear m6A recognition
Tài liệu tham khảo
Zaccara, 2019, Reading, writing and erasing mRNA methylation, Nat. Rev. Mol. Cell Biol., 20, 608, 10.1038/s41580-019-0168-5
Patil, 2017, Reading m6A in the transcriptome: m6A-binding proteins, Trends Cell Biol., 28, 113, 10.1016/j.tcb.2017.10.001
Zhang, 2010, The YTH domain is a novel RNA binding domain, J. Biol. Chem., 285, 14701, 10.1074/jbc.M110.104711
Theler, 2014, Solution structure of the YTH domain in complex with N6-methyladenosine RNA: a reader of methylated RNA, Nucleic Acids Res., 42, 13911, 10.1093/nar/gku1116
Xu, 2014, Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain, Nat. Chem. Biol., 10, 927, 10.1038/nchembio.1654
Xu, 2015, Structural basis for the discriminative recognition of N6-methyladenosine RNA by the human YT521-B homology domain family of proteins, J. Biol. Chem., 290, 24902, 10.1074/jbc.M115.680389
Luo, 2014, Molecular basis for the recognition of methylated adenines in RNA by the eukaryotic YTH domain, Proc. Natl. Acad. Sci. U. S. A., 111, 13834, 10.1073/pnas.1412742111
Imai, 1998, Cloning of a gene, YT521, for a novel RNA splicing-related protein induced by hypoxia/reoxygenation, Brain Res. Mol. Brain Res., 53, 33, 10.1016/S0169-328X(97)00262-3
Hartmann, 1999, The interaction and colocalization of Sam68 with the splicing-associated factor YT521-B in nuclear dots is regulated by the Src family kinase p59fyn, Mol. Biol. Cell, 10, 3909, 10.1091/mbc.10.11.3909
Nayler, 2000, The ER repeat protein YT521-B localizes to a novel subnuclear compartment, J. Cell Biol., 150, 949, 10.1083/jcb.150.5.949
Galganski, 2017, Nuclear speckles: molecular organization, biological function and role in disease, Nucleic Acids Res., 45, 10350, 10.1093/nar/gkx759
Cheng, 2021, N6-Methyladenosine on mRNA facilitates a phase-separated nuclear body that suppresses myeloid leukemic differentiation, Cancer Cell, 39, 958, 10.1016/j.ccell.2021.04.017
Lee, 2021, Enhancer RNA m6A methylation facilitates transcriptional condensate formation and gene activation, Mol. Cell, 81, 3368, 10.1016/j.molcel.2021.07.024
Fu, 2020, m6A-binding YTHDF proteins promote stress granule formation, Nat. Chem. Biol., 16, 955, 10.1038/s41589-020-0524-y
Gao, 2019, Multivalent m6A motifs promote phase separation of YTHDF proteins, Cell Res., 29, 767, 10.1038/s41422-019-0210-3
Ries, 2019, m6A enhances the phase separation potential of mRNA, Nature, 571, 424, 10.1038/s41586-019-1374-1
Wang, 2020, Binding to m6A RNA promotes YTHDF2-mediated phase separation, Protein Cell, 11, 304, 10.1007/s13238-019-00660-2
Xiao, 2016, Nuclear m6A reader YTHDC1 regulates mRNA splicing, Mol. Cell, 61, 507, 10.1016/j.molcel.2016.01.012
Kasowitz, 2018, Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development, PLoS Genet., 14, 10.1371/journal.pgen.1007412
Roundtree, 2017, YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs, eLife, 6, 10.7554/eLife.31311
Louloupi, 2018, Transient N6-methyladenosine transcriptome sequencing reveals a regulatory role of m6A in splicing efficiency, Cell Rep., 23, 3429, 10.1016/j.celrep.2018.05.077
Lesbirel, 2018, The m6A-methylase complex recruits TREX and regulates mRNA export, Sci. Rep., 8, 13827, 10.1038/s41598-018-32310-8
Chen, 2019, N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis, Nat. Commun., 10, 4695, 10.1038/s41467-019-12651-2
Chen, 2020, Nuclear export of chimeric mRNAs depends on an lncRNA-triggered autoregulatory loop in blood malignancies, Cell Death Dis., 11, 566, 10.1038/s41419-020-02795-1
Wang, 2021, N6-methyladenosine modification of MALAT1 promotes metastasis via reshaping nuclear speckles, Dev. Cell, 56, 702, 10.1016/j.devcel.2021.01.015
Huang, 2020, The biogenesis and precise control of RNA m(6)A methylation, Trends Genet., 36, 44, 10.1016/j.tig.2019.10.011
Li, 2020, N6-Methyladenosine co-transcriptionally directs the demethylation of histone H3K9me2, Nat. Genet., 52, 870, 10.1038/s41588-020-0677-3
Adelman, 2012, Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans, Nat. Rev. Genet., 13, 720, 10.1038/nrg3293
Akhtar, 2021, m(6)A RNA methylation regulates promoter- proximal pausing of RNA polymerase II, Mol. Cell, 81, 3356, 10.1016/j.molcel.2021.06.023
Hnisz, 2017, A phase separation model for transcriptional control, Cell, 169, 13, 10.1016/j.cell.2017.02.007
Sabari, 2018, Coactivator condensation at super-enhancers links phase separation and gene control, Science, 361, 10.1126/science.aar3958
Chen, 2021, Nuclear m(6)A reader YTHDC1 regulates the scaffold function of LINE1 RNA in mouse ESCs and early embryos, Protein Cell, 12, 455, 10.1007/s13238-021-00837-8
Ji, 2021, A heat shock–responsive lncRNA Heat acts as a HSF1-directed transcriptional brake via m6A modification, Proc. Natl. Acad. Sci. U. S. A., 118, 10.1073/pnas.2102175118
Liu, 2020, N6-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription, Science, 367, 580, 10.1126/science.aay6018
Liu, 2021, The RNA m(6)A reader YTHDC1 silences retrotransposons and guards ES cell identity, Nature, 591, 322, 10.1038/s41586-021-03313-9
Patil, 2016, m6A RNA methylation promotes XIST-mediated transcriptional repression, Nature, 537, 369, 10.1038/nature19342
Xiong, 2021, RNA m6A modification orchestrates a LINE-1–host interaction that facilitates retrotransposition and contributes to long gene vulnerability, Cell Res., 31, 861, 10.1038/s41422-021-00515-8
Xu, 2021, METTL3 regulates heterochromatin in mouse embryonic stem cells, Nature, 591, 317, 10.1038/s41586-021-03210-1
Dueva, 2019, Neutralization of the positive charges on histone tails by RNA promotes an open chromatin structure, Cell Chem. Biol., 26, 1436, 10.1016/j.chembiol.2019.08.002
Chelmicki, 2021, m(6)A RNA methylation regulates the fate of endogenous retroviruses, Nature, 591, 312, 10.1038/s41586-020-03135-1
Sabari, 2020, Biomolecular condensates in the nucleus, Trends Biochem. Sci., 45, 961, 10.1016/j.tibs.2020.06.007
Liao, 2020, Splicing at the phase-separated nuclear speckle interface: a model, Nucleic Acids Res., 49, 636, 10.1093/nar/gkaa1209
Wang, 2019, Histone modifications regulate chromatin compartmentalization by contributing to a phase separation mechanism, Mol. Cell, 76, 646, 10.1016/j.molcel.2019.08.019
Meola, 2016, Identification of a nuclear exosome decay pathway for processed transcripts, Mol. Cell, 64, 520, 10.1016/j.molcel.2016.09.025
Anders, 2018, Dynamic m6A methylation facilitates mRNA triaging to stress granules, Life Sci. Alliance, 1, 10.26508/lsa.201800113
Langdon, 2018, mRNA structure determines specificity of a polyQ-driven phase separation, Science, 360, 922, 10.1126/science.aar7432
Liu, 2015, N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions, Nature, 518, 560, 10.1038/nature14234
Maharana, 2018, RNA buffers the phase separation behavior of prion-like RNA binding proteins, Science, 360, 918, 10.1126/science.aar7366
Wilson, 2020, Programmable m(6)A modification of cellular RNAs with a Cas13-directed methyltransferase, Nat. Biotechnol., 38, 1431, 10.1038/s41587-020-0572-6
Mo, 2020, TRADES: targeted RNA demethylation by SunTag System, Adv. Sci., 7, 10.1002/advs.202001402
Liu, 2019, Programmable RNA N(6)-methyladenosine editing by CRISPR-Cas9 conjugates, Nat. Chem. Biol., 15, 865, 10.1038/s41589-019-0327-1
Li, 2020, Targeted mRNA demethylation using an engineered dCas13b-ALKBH5 fusion protein, Nucleic Acids Res., 48, 5684, 10.1093/nar/gkaa269
Bedi, 2020, Selectively disrupting m6A-dependent protein–RNA interactions with fragments, ACS Chem. Biol., 15, 618, 10.1021/acschembio.9b00894