The monotone circuit complexity of boolean functions
Tóm tắt
Từ khóa
Tài liệu tham khảo
A. V. Aho, J. E. Hopcroft, andJ. D. Ullman,The Design and Analysis of Computer Algorithms, Addison—Wesley, Reading, 1974.
A. E. Andreev, On a method for obtaining lower bounds for the complexity of individual monotone functions,Dokl. Ak. Nauk. SSSR 282 (1985), 1033–1037 (in Russian). English translation inSov. Math. Dokl. 31 (1985), 530–534.
P. A. Bloniarz,The complexity of monotone Boolean functions and an algorithm for finding shortest paths in a graph, Ph. D. Dissertation, Technical Report238, Laboratory for Computer Science, Massachusetts Institute of Technology, 1979.
N. Blum, A Boolean function requiring 3n network size,Theoretical Computer Science 28 (1984), 337–345.
F. Chung andR. M. Karp,in: Open problems proposed at the NSF Conf. on Complexity Theory, Eugene, Oregon 1984,SIGACT News 16 (1984), 46.
P. Erdős andR. Rado, Intersection theorems for systems of sets,Journal of London Mathematical Society 35 (1960), 85–90.
J. E. Hopcroft andR. M. Karp, Ann 5/2 algorithm for maximum matching in bipartite graphs,SIAM Journal on Computing 4 (1973), 225–231.
K. Mehlhorn andZ. Galil, Monotone switching circuits and Boolean matrix product,Computing 16 (1976), 99–111.
J. Nešetřil andS. Poljak, On the complexity of the subgraph problem,CMUC 26 (1985), 415–419.
M. S. Paterson, Complexity of monotone networks for Boolean matrix products,Theoretical Computer Science 1 (1975), 13–20.
V. R. Pratt, The power of negative thinking in multiplying Boolean matrices,SIAM Journal on Computing 4 (1974), 326–330.
A. A. Razborov, Lower bounds for the monotone complexity of some Boolean functions,Dokl. Ak. Nauk. SSSR,281, (1985), 798–801 (in Russian). English translation in:Sov. Math. Dokl.,31 (1985), 354–357.
A. A. Razborov, Lower bounds on monotone network complexity of the logical permanent,Mat. Zametki,37 (1985), 887–900 (in Russian). English translation in:Math. Notes of the Academy of Sciences of the USSR 37 (1985), 485–493.
C. E. Shannon, The synthesis of two-terminal switching circuits,Bell System Technical Journal,28 (1949), 59–98.
S. Skyum andL. G. Valiant, A complexity theory based on Boolean algebra,Journal of the ACM,32:2 (1985), 484–502.
J. Tiekenheinrich, A 4n-lower bound on the monotone network complexity of a one-output Boolean function,Information Processing Letters,18 (1984), 201–202.
L. G. Valiant, Completeness classes in algebra,Proceedings of 11 th ACM Symposium on Theory of Computing, (1979), 249–261.