The molecular evolutionary tree of lizards, snakes, and amphisbaenians

Comptes Rendus Biologies - Tập 332 - Trang 129-139 - 2009
Nicolas Vidal1, S. Blair Hedges2
1Département systématique et évolution, UMR 7138, Systématique, évolution, adaptation, case postale 26, Muséum national d'histoire naturelle, 57, rue Cuvier, 75231 Paris cedex 05, France
2Department of Biology, 208 Mueller Lab, Pennsylvania State University, University Park, PA 16802-5301, USA

Tài liệu tham khảo

Zug, 2001 Evans, 2003, At the feet of the dinosaurs: the early history and radiation of lizards, Biol. Rev., 78, 513, 10.1017/S1464793103006134 Pianka, 2003 Pough, 2003 Uetz Camp, 1923, Classification of the lizards, Bull. Am. Mus. Nat. Hist., 48, 289 Estes, 1988, Phylogenetic relationships within Squamata, 119 Rieppel, 1988, A review of the origin of snakes, Evol. Biol., 22, 37, 10.1007/978-1-4613-0931-4_2 Evans, 1998, An unusual lizard (Reptilia, Squamata) from the Early Cretaceous of Las Hoyas, Spain, Zool. J. Linn. Soc., 124, 235, 10.1111/j.1096-3642.1998.tb00576.x Hallerman, 1998, The ethmoidal region of Dibamus taylori (Squamata: Dibamidae), with a phylogenetic hypothesis on dibamid relationships within Squamata, Zool. J. Linn. Soc., 122, 385, 10.1111/j.1096-3642.1998.tb02157.x Lee, 1998, Convergent evolution and character correlation in burrowing reptiles: toward a resolution of squamate phylogeny, Biol. J. Linn. Soc., 65, 369, 10.1111/j.1095-8312.1998.tb01148.x Reynoso, 1998, Huehuecuetzpalli mixtecus gen. et sp. nov: a basal squamate (Reptilia) from the Early Cretaceous of Tepexi de Rodríguez, Central Mexico, Phil. Trans. R. Soc. Lond. B, 353, 477, 10.1098/rstb.1998.0224 Lee, 2000, Soft anatomy, diffuse homoplasy, and the relationships of lizards and snakes, Zool. Scr., 29, 101, 10.1046/j.1463-6409.2000.00035.x Lee, 2000, Adriosaurus and the affinities of mosasaurs, dolichosaurs, and snakes, J. Palaeontol., 74, 915, 10.1666/0022-3360(2000)074<0915:AATAOM>2.0.CO;2 Lee, 2005, Squamate phylogeny, taxon sampling, and data congruence, Organisms, Diversity & Evolution, 5, 25, 10.1016/j.ode.2004.05.003 Schwenk, 2000, Feeding in Lepidosaurs, 175 Herrel, 2001, The evolution of feeding motor patterns in lizards: modulatory complexity and possible constraints, Am. Zool., 41, 1311, 10.1668/0003-1569(2001)041[1311:TEOFMP]2.0.CO;2 Vitt, 2003, History and the global ecology of squamate reptiles, Am. Nat., 162, 44, 10.1086/375172 Lee, 2004, Resolving reptile relationships, 451 Vitt, 2005, Deep history impacts present-day ecology and biodiversity, Proc. Natl. Acad. Sci. USA, 102, 7877, 10.1073/pnas.0501104102 Cundall, 2000, Feeding in snakes, 293 Greene, 1997 Lee, 2002, Snake phylogeny based on osteology, soft anatomy and ecology, Biol. Rev., 77, 333, 10.1017/S1464793102005924 Rage, 2003, The Cenomanian: stage of hindlimbed snakes, Carnets de Géologie, 1, 1 Rieppel, 2002, Testing the phylogenetic relationships of the Pleistocene snake Wonambi naracoortensis Smith, J. Vert. Paleontol., 22, 812, 10.1671/0272-4634(2002)022[0812:TTPROT]2.0.CO;2 Cadle, 1987, Geographic distribution: problems in phylogeny and zoogeography, 77 Cadle, 1994, The colubrid radiation in Africa (Serpentes: Colubridae): phylogenetic relationships and evolutionary patterns based on immunological data, Zool. J. Linn. Soc., 110, 103, 10.1111/j.1096-3642.1994.tb01473.x McDowell, 1987, Systematics, 3 Underwood, 1993, On the affinities of the burrowing asps Atractaspis (Serpentes: Atractaspididae), Zool. J. Linn. Soc., 107, 3, 10.1111/j.1096-3642.1993.tb01252.x Zaher, 1999, Hemipenial morphology of the South American xenodontine snakes, with a proposal for a monophyletic Xenodontinae and a reappraisal of colubroid hemipenes, Bull. Amer. Mus. Nat. Hist., 240, 1 Vidal, 2002, Colubroid systematics: evidence for an early appearance of the venom apparatus followed by extensive evolutionary tinkering, J. Tox. Tox. Reviews, 21, 21, 10.1081/TXR-120004740 Boulenger, 1896, Remarks on the dentition of snakes and on the evolution of the poison-fangs, Proc. Zool. Soc. London, 1896, 614, 10.1111/j.1096-3642.1896.tb03069.x Cope, 1900, The crocodilians, lizards, and snakes of North America, Rep. U.S. Nat. Mus., 1898, 153 Bogert, 1943, Dentitional phenomena in cobras and other elapids with notes on adaptative modifications of fangs, Bull. Am. Mus. Nat. Hist., 81, 285 Johnson, 1956, The origin and evolution of the venomous snakes, Evolution, 10, 56, 10.2307/2406096 Schmidt, 1950, Modes of evolution discernible in the taxonomy of snakes, Evolution, 4, 79, 10.2307/2405535 Anthony, 1955, Essai sur l'évolution anatomique de l'appareil venimeux des ophidiens, Ann. Sci. Nat., Zool. Biol. Anim., 11, 7 Kardong, 1982, The evolution of the venom apparatus in snakes from colubrids to viperids and elapids, Mem. Inst. Butantan, 46, 105 Kearney, 2003, Systematics of the Amphisbaenia (Lepidosauria: Squamata) based on morphological evidence from recent and fossil forms, Herpetol. Monogr., 17, 1, 10.1655/0733-1347(2003)017[0001:SOTALB]2.0.CO;2 Navas, 2004, Morphological and physiological specialization for digging in amphisbaenians, an ancient lineage of fossorial vertebrates, J. Exp. Biol., 207, 2433, 10.1242/jeb.01041 Gans, 1978, The characteristics and affinities of the Amphisbaenia, Trans. Zool. Soc. Lond., 34, 347, 10.1111/j.1096-3642.1978.tb00376.x Kearney, 2004, Repeated evolution of limblesness and digging heads in worm lizards revealed by DNA from old bones, Proc. R. Soc. B, 271, 1677, 10.1098/rspb.2004.2771 Gans, 1990, Patterns in amphisbaenian biogeography: a preliminary analysis, 133 Hembree, 2006, Amphisbaenian biogeography: evidence of vicariance and geodispersal patterns, Palaeogeogr. Palaeoclimatol. Palaeoecol., 235, 340, 10.1016/j.palaeo.2005.11.006 Saint, 1998, C-mos, a nuclear marker useful for squamate phylogenetic analysis, Mol. Phylogenet. Evol., 10, 259, 10.1006/mpev.1998.0515 Harris, 2001, Squamate relationships based on C-mos nuclear DNA sequences: increased taxon sampling improves bootstrap support, Amphibia-Reptilia, 22, 235, 10.1163/15685380152030454 Harris, 2003, Codon bias variation in C-mos between squamate families might distort phylogenetic inferences, Mol. Phylogenet. Evol., 27, 540, 10.1016/S1055-7903(03)00012-5 Vidal, 2004, Molecular evidence for a terrestrial origin of snakes, Proc. R. Soc. Lond. B, 271, S226, 10.1098/rsbl.2003.0151 Townsend, 2004, Molecular phylogenetics of Squamata: the position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree, Syst. Biol., 53, 735, 10.1080/10635150490522340 Vidal, 2005, The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes, C. R. Biologies, 328, 1000, 10.1016/j.crvi.2005.10.001 Whiting, 2003, Phylogenetic relationships and limb loss in sub-Saharan African scincine lizards (Squamata: Scincidae), Mol. Phyl. Evol., 29, 582, 10.1016/S1055-7903(03)00142-8 Fry, 2005, Early evolution of the venom system in lizards and snakes, Nature, 439, 584, 10.1038/nature04328 Vidal, 2008, Origin of tropical American burrowing reptiles by transatlantic rafting, Biol. Lett., 4, 115, 10.1098/rsbl.2007.0531 Gamble, 2008, Evidence for Gondwanan vicariance in an ancient clade of gecko lizards, J. Biogeogr., 35, 88 Wiens, 2006, Why does a trait evolve multiple times within a clade? Repeated evolution of snakelike body form in squamate reptiles, Evolution, 60, 123 Hugall, 2007, Calibration choice, rate smoothing, and the pattern of tetrapod diversification according to the long nuclear gene RAG-1, Syst. Biol., 56, 543, 10.1080/10635150701477825 Macey, 1999, Molecular phylogenetics, tRNA evolution, and historical biogeography in anguid lizards and related taxonomic families, Mol. Phylogenet. Evol., 12, 250, 10.1006/mpev.1999.0615 Greer, 1991, Limb reduction in squamates: identification of the lineages and discussion of the trends, J. Herpetol., 25, 166, 10.2307/1564644 Gamble, 2008, Out of the blue: a novel, trans-Atlantic clade of geckos (Gekkota, Squamata), Zool. Scr., 37, 355, 10.1111/j.1463-6409.2008.00330.x S.B. Hedges, N. Vidal, Lizards, snakes, and amphisbaenians (Squamata), in: S.B. Hedges, S. Kumar (Eds.), The Timetree of Life, Oxford University Press, New York, 2009, in press Vidal, 2002, Higher-level relationships of snakes inferred from four nuclear and mitochondrial genes, C. R. Biologies, 325, 977, 10.1016/S1631-0691(02)01510-X Vidal, 2002, Higher-level relationships of caenophidian snakes inferred from four nuclear and mitochondrial genes, C. R. Biologies, 325, 987, 10.1016/S1631-0691(02)01509-3 Slowinski, 2002, Snake phylogeny: evidence from nuclear and mitochondrial genes, Mol. Phylogenet. Evol., 24, 194, 10.1016/S1055-7903(02)00239-7 Vidal, 2004, New insights into the early history of snakes inferred from two nuclear genes, Mol. Phylogenet. Evol., 31, 783, 10.1016/j.ympev.2004.01.001 Lawson, 2005, Phylogeny of the Colubroidea (Serpentes): new evidence from mitochondrial and nuclear genes, Mol. Phylogenet. Evol., 37, 581, 10.1016/j.ympev.2005.07.016 Noonan, 2006, Dispersal and vicariance: the complex history of boid snakes, Mol. Phylogenet. Evol., 40, 347, 10.1016/j.ympev.2006.03.010 Vidal, 2007, The higher-level relationships of alethinophidian snakes inferred from seven nuclear and mitochondrial genes, 27 Vidal, 2007, The phylogeny and classification of caenophidian snakes inferred from seven nuclear protein-coding genes, C. R. Biologies, 330, 182, 10.1016/j.crvi.2006.10.001 Gower, 2005, First inclusion of Anomochilidae in molecular phylogenetics of the major lineages of snakes, J. Zool. Syst. Evol. Res., 43, 315, 10.1111/j.1439-0469.2005.00315.x Fry, 2008, Evolution of an arsenal: structural and functional diversification of the venom system in the advanced snakes (Caenophidia), Mol. Cell. Proteomics, 7, 215, 10.1074/mcp.M700094-MCP200 Amer, 2005, Mitochondrial genome of Pogona vitticepes (Reptilia; Agamidae): control region duplication and the origin of Australasian agamids, Gene, 346, 249, 10.1016/j.gene.2004.11.014