The modular nature of bradykinin-potentiating peptides isolated from snake venoms

Juliana Mozer Sciani1, Daniel Carvalho Pimenta1
1Laboratory of Biochemistry and Biophysics, Butantan Institute, São Paulo, Brazil

Tóm tắt

Bradykinin-potentiating peptides (BPPs) are molecules discovered by Sergio Ferreira – who found them in the venom of Bothrops jararaca in the 1960s – that literally potentiate the action of bradykinin in vivo by, allegedly, inhibiting the angiotensin-converting enzymes. After administration, the global physiological effect of BPP is the decrease of the blood pressure. Due to this interesting effect, one of these peptides was used by David Cushman and Miguel Ondetti to develop a hypotensive drug, the widely known captopril, vastly employed on hypertension treatment. From that time on, many studies on BPPs have been conducted, basically describing new peptides and assaying their pharmacological effects, mostly in comparison to captopryl. After compiling most of these data, we are proposing that snake BPPs are ‘modular’ peptidic molecules, in which the combination of given amino acid ‘blocks’ results in the different existing peptides (BPPs), commonly found in snake venom. We have observed that there would be mandatory modules (present in all snake BPPs), such as the N-terminal pyroglutamic acid and C-terminal QIPP, and optional modules (amino acid blocks present in some of them), such as AP or WAQ. Scattered between these modules, there might be other amino acids that would ‘complete’ the peptide, without disrupting the signature of the classical BPP. This modular arrangement would represent an important evolutionary advantage in terms of biological diversity that might have its origins either at the genomic or at the post-translational modification levels. Regardless of the modules’ origin, the increase in the diversity of peptides has definitely been essential for snakes’ success on nature.

Tài liệu tham khảo

Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A, Premaratna R, et al. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med. 2008;5(11):e218. Caldwell MW, Nydam RL, Palci A, Apesteguía S. The oldest known snakes from the middle Jurassic-lower cretaceous provide insights on snake evolution. Nat Commun. 2015;6:5996. https://doi.org/10.1038/ncomms6996. Weinstein SA. Snake venoms: a brief treatise on etymology, origins of terminology, and definitions. Toxicon. 2015;103:188–95. Fry BG, Casewell NR, Wüster W, Vidal N, Jackson TNW, Young B. The structural and functional diversification of the Toxicofera reptile venom system. Toxicon. 2012;60(4):434–48. Bauchot R. Snakes: a natural history. New York City, NY, USA: Sterling Publishing Co; 1994. p. 194–209. 1-4027-3181-7 McGhee S, Finnegan A, Clochesy JM, Visovsky C. Effects of snake envenomation: a guide for emergency nurses. Emerg Nurse. 2015;22(9):24–9. Ferreira SHA. Bradykinin-potentiating factor (BPF) present in the venom of Bothrops jararaca. Br J Pharmacol Chemother. 1965;24(1):163–9. Cushman DW, Ondetti MA. History of the design of captopril and related inhibitors of angiotensin converting enzyme. Hypertension. 1991;17(4):589–92. Fernandez JH, Neshich G, Camargo AC. Using bradykinin-potentiating peptide structures to develop new antihypertensive drugs. Genet Mol Res. 2004;3(4):554–63. Dendorfer A, Wolfrum S, Dominiak P. Pharmacology and cardiovascular implications of the kinin-kallikrein system. Jpn J Pharmacol. 1999;79(4):403–26. Ferreira SH. Rocha e Silva M. Potentiation of bradykinin and eledoisin by BPF (bradykinin potentiating factor) from Bothrops jararaca venom. Experientia. 1965;21(6):347–9. Verano-Braga T, Rocha-Resende C, Silva DM, Ianzer D, Martin-Eauclaire MF, Bougis PE, et al. Tityus serrulatus Hypotensins: a new family of peptides from scorpion venom. Biochem Biophys Res Commun. 2008;371(3):515–20. Conceição K, Konno K, de Melo RL, Antoniazzi MM, Jared C, Sciani JM, et al. Isolation and characterization of a novel bradykinin potentiating peptide (BPP) from the skin secretion of Phyllomedusa hypochondrialis. Peptides. 2007;28(3):515–23. Chi CW, Wang SZ, LG X, Wang MY, Lo SS, Huang WD. Structure-function studies on the bradykinin potentiating peptide from Chinese snake venom (Agkistrodon halys Pallas). Peptides. 1985;6(Suppl 3):339–42. Cintra AC, Vieira CA, Giglio JR. Primary structure and biological activity of bradykinin potentiating peptides from Bothrops insularis snake venom. J Protein Chem. 1990;9(2):221–7. Gomes CL, Konno K, Conceicao IM, Ianzer D, Yamanouye N, Prezoto BC, et al. Identification of novel bradykinin-potentiating peptides (BPPs) in the venom gland of a rattlesnake allowed the evaluation of the structure-function relationship of BPPs. Biochem Pharmacol. 2007;74(9):1350–60. Ianzer D, Konno K, Marques-Porto R, Vieira Portaro FC, Stöcklin R, Martins de Camargo AC, et al. Identification of five new bradykinin potentiating peptides (BPPs) from Bothrops jararaca crude venom by using electrospray ionization tandem mass spectrometry after a two-step liquid chromatography. Peptides. 2004;25(7):1085–92. Camargo AC, Ianzer D, Guerreiro JR, Serrano SM. Bradykinin-potentiating peptides: beyond captopril. Toxicon. 2012;59(4):516–23. Pimenta DC, Prezoto BC, Konno K, Melo RL, Furtado MF, Camargo AC, et al. Mass spectrometric analysis of the individual variability of Bothrops jararaca venom peptide fraction. Evidence for sex-based variation among the bradykinin-potentiating peptides. Rapid Commun Mass Spectrom. 2007;21(6):1034–42. Rawlings ND, Barrett AJ, Finn RD. Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 2016;44(D1):D343–50. Marques-Porto R, Lebrun I, Pimenta DC. Self-proteolysis regulation in the Bothrops jararaca venom: the metallopeptidases and their intrinsic peptidic inhibitor. Comp Biochem Physiol C Toxicol Pharmacol. 2008;147(4):424–33. Zelanis A, Menezes MC, Kitano ES, Liberato T, Tashima AK, Pinto AFM, et al. Proteomic identification of gender molecular markers in Bothrops jararaca venom. J Proteome. 2016;139:26–37. Huang KF, Chiou SH, Ko TP, Wang AH. Determinants of the inhibition of a Taiwan habu venom metalloproteinase by its endogenous inhibitors revealed by X-ray crystallography and synthetic inhibitor analogues. Eur J Biochem. 2002;269(12):3047–56. Wagstaff SC, Favreau P, Cheneval O, Laing GD, Wilkinson MC, Miller RL, et al. Molecular characterisation of endogenous snake venom metalloproteinase inhibitors. Biochem Biophys Res Commun. 2008;365(4):650–6. Fucase TM, Sciani JM, Cavalcante I, Viala VL, Chagas BB, Pimenta DC, et al. Isolation and biochemical characterization of bradykinin-potentiating peptides from Bitis gabonica Rhinoceros. J Venom Anim Toxins incl Trop Dis. 2017;23:33. Tanaka T, Chung GTY, Forster A, Natividad Lobato M, Rabbitts TH. De novo production of diverse intracellular antibody libraries. Nucleic Acids Res. 2003;31(5):e23. Hargreaves AD, Swain MT, Hegarty MJ, Logan DW, Mulley JF. Restriction and recruitment - gene duplication and the origin and evolution of snake venom toxins. Genome Biol Evol. 2014;6(8):2088–95. de Camargo Gonçalves LR, Chudzinski-Tavassi AM. High molecular mass kininogen inhibits metalloproteinases of Bothrops jararaca snake venom. Biochem Biophys Res Commun. 2004;318(1):53–9. Meki AR, Nassar AY, Rochat HA. Bradykinin-potentiating peptide (peptide K12) isolated from the venom of Egyptian scorpion Buthus occitanus. Peptides. 1995;16(8):1359–65. Conceição K, Bruni FM, Sciani JM, Konno K, Melo RL, Antoniazzi MM, et al. Identification of bradykinin-related peptides from Phyllomedusa nordestina skin secretion using electrospray ionization tandem mass spectrometry after a single-step liquid chromatography. J Venom Anim Toxins incl Trop Dis. 2009;15(4) http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992009000400004. Perpetuo EA, Juliano L, Lebrun I. Biochemical and pharmacological aspects of two bradykinin-potentiating peptides obtained from tryptic hydrolysis of casein. J Protein Chem. 2003;22(7–8):601–6. Ferreira LAF, Alves WE, Lucas MS, Habermehl GG. Isolation and characterization of a bradykinin potentiating peptide (BPP-S) isolated from Scaptocosa raptoria venom. Toxicon. 1996;34(5):599–603. Ianzer D, Konno K, Xavier CH, Stöcklin R, Santos RA, de Camargo AC, et al. Hemorphin and hemorphin-like peptides isolated from dog pancreas and sheep brain are able to potentiate bradykinin activity in vivo. Peptides. 2006;27(11):2957–66.