The modified embedded-atom method interatomic potentials and recent progress in atomistic simulations
Tóm tắt
Từ khóa
Tài liệu tham khảo
Daw, 1993, The embedded-atom method: a review of theory and applications, Mater. Sci. Rep., 9, 251, 10.1016/0920-2307(93)90001-U
Lee, 2009, A semi-empirical atomistic approach in materials research, J. Phase Equilib. and Diff., 30, 509, 10.1007/s11669-009-9565-3
Kohlhoff, 1991, Crack propagation in bcc crystals studied with a combined finite-element and atomistic model, Philos. Mag. A, 64, 851, 10.1080/01418619108213953
Curtin, 2003, Atomistic/continuum coupling in computational materials science, Model. Simul. Mater. Sci. Eng., 11, R33, 10.1088/0965-0393/11/3/201
Kubin, 1992, The modelling of dislocation patterns, Scripta Met., 27, 957, 10.1016/0956-716X(92)90456-O
Van der Giessen, 1995, Discrete dislocation plasticity: a simple planar model, Model. Simul. Mater. Sci. Eng., 3, 689, 10.1088/0965-0393/3/5/008
Carlsson, 1990
Daw, 1984, Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B, 29, 6443, 10.1103/PhysRevB.29.6443
Finnis, 1984, A simple empirical N-body potential for transition metals, Philos. Mag. A, 50, 45, 10.1080/01418618408244210
Ercolessi, 1986, Au (100) surface reconstruction, Phys. Rev. Lett., 57, 719, 10.1103/PhysRevLett.57.719
Tersoff, 1988, New empirical approach for the structure and energy of covalent systems, Phys. Rev. B, 37, 6991, 10.1103/PhysRevB.37.6991
Rosato, 1989, Thermodynamical and structural properties of fcc transition metals using a simple tight-binding model, Philos. Mag. A, 59, 321, 10.1080/01418618908205062
Brenner, 1990, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Phys. Rev. B, 42, 9458, 10.1103/PhysRevB.42.9458
Stuart, 2000, A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys., 112, 6472, 10.1063/1.481208
van Duin, 2001, ReaxFF: a reactive force field for hydrocarbons, J. Phys. Chem. A, 105, 9396, 10.1021/jp004368u
Baskes, 1992, Modified embedded-atom method potentials for cubic materials and impurities, Phys. Rev. B, 46, 2727, 10.1103/PhysRevB.46.2727
Lee, 2000, Second nearest-neighbor modified embedded-atom method potential, Phys. Rev. B, 62, 8564, 10.1103/PhysRevB.62.8564
Lee, 2001, Second nearest-neighbor modified embedded atom method potentials for BCC transition metals, Phys. Rev. B, 64, 184102, 10.1103/PhysRevB.64.184102
Lee, 2003, Semi-empirical atomic potentials for the FCC Metals Cu, Ag, Au, Ni, Pd, Pt, Al and Pb based on first and second nearest-neighbor modified embedded atom method, Phys. Rev. B, 68, 144112, 10.1103/PhysRevB.68.144112
Kim, 2006, Modified embedded atom method interatomic potentials for Ti and Zr, Phys. Rev. B, 74, 014101, 10.1103/PhysRevB.74.014101
Kim, 2009, Atomistic modeling of pure Mg and Mg–Al system, CALPHAD, 33, 650, 10.1016/j.calphad.2009.07.004
Kim, 2009, Modified embedded-atom method interatomic potentials for pure Mn and Fe–Mn System, Acta Mater., 57, 474, 10.1016/j.actamat.2008.09.031
Lee, 2005, A modified embedded atom method interatomic potential for carbon, CALPHAD, 29, 7, 10.1016/j.calphad.2005.02.003
Lee, 2007, A modified embedded atom method interatomic potential for silicon, CALPHAD, 31, 95, 10.1016/j.calphad.2006.10.002
Kim, 2008, A modified embedded atom method interatomic potential for germanium, CALPHAD, 32, 34, 10.1016/j.calphad.2007.12.003
Rose, 1984, Universal features of the equation of state of metals, Phys. Rev. B, 29, 2963, 10.1103/PhysRevB.29.2963
Baskes, 1997, Determination of modified embedded atom method parameters for nickel, Mater. Chem. Phys., 50, 152, 10.1016/S0254-0584(97)80252-0
Lee, 2006, A modified embedded-atom method interatomic potential for the Fe–N System: a comparative study with the Fe–C system, Acta Mater., 54, 4597, 10.1016/j.actamat.2006.06.003
Kim, 2009, Modified embedded-atom method interatomic potentials for the Fe–Ti–C and Fe–Ti–N systems, Acta Mater., 57, 3140, 10.1016/j.actamat.2009.03.019
Lee, 2006, A modified embedded atom method interatomic potential for the Fe–C system, Acta Mater., 54, 701, 10.1016/j.actamat.2005.09.034
Kim, 2008, Modified embedded-atom method interatomic potentials for the Ti–C and Ti–N systems, Acta Mater., 56, 3481, 10.1016/j.actamat.2008.03.027
Sa, 2008, Modified embedded-atom method interatomic potentials for the Fe–Nb and Fe–Ti systems, Scripta Mater., 59, 595, 10.1016/j.scriptamat.2008.05.007
Kim, 2010, Modified embedded-atom method interatomic potentials for the Nb–C, Nb–N, Fe–Nb–C and Fe–Nb–N systems, J. Mater. Res., 25, 1288, 10.1557/JMR.2010.0182
Sundquist, 1964, A direct determination of the anisotropy of the surface free energy of solid gold, silver, copper, nickel, and alpha and gamma iron, Acta Metall., 12, 67, 10.1016/0001-6160(64)90055-0
Do, 2008, A modified embedded atom method interatomic potential for indium, CALPHAD, 32, 82, 10.1016/j.calphad.2007.08.004
B.-J. Lee, Pohang University of Science and Technology (POSTECH), Korea, unpublished work.
Lee, 2007, A modified embedded-atom method interatomic potential for the Fe–H system, Acta Mater., 55, 6779, 10.1016/j.actamat.2007.08.041
J.-H. Shim, Korea Institute of Science and Technology (KIST), Korea, unpublished work.
Lee, 2010, Modified embedded-atom method interatomic potential for the Fe–Al system, J. Phys.: Condens. Matter, 22, 175702, 10.1088/0953-8984/22/17/175702
Lee, 2001, A semi-empirical atomic potential for the Fe–Cr binary system, CALPHAD, 25, 527, 10.1016/S0364-5916(02)00005-6
Lee, 2005, An MEAM interatomic potential for the Fe–Cu alloy system and cascade simulation on pure Fe and Fe–Cu alloy, Phys. Rev. B, 71, 184205, 10.1103/PhysRevB.71.184205
Kim, 2006, Modified embedded-atom method interatomic potential for the Fe–Pt alloy system, J. Mater. Res., 21, 199, 10.1557/jmr.2006.0008
Kang, 2009, An atomistic modeling of the Cu–Zr–Ag bulk metallic glass system, Scripta Mater., 61, 801, 10.1016/j.scriptamat.2009.07.002
Agren, 2007, Applications of computational thermodynamics — the extension from phase equilibrium to phase transformations and other properties, CALPHAD, 31, 53, 10.1016/j.calphad.2006.02.006
Lee, 2004, A modified embedded atom method interatomic potential for the Cu–Ni System, CALPHAD, 28, 125, 10.1016/j.calphad.2004.06.001
Kim, 2007, A semi-empirical interatomic potential for the Cu–Ti binary system, Mater. Sci. Eng. A, 449
Kim, 2008, A modified embedded-atom method interatomic potential for the Cu–Zr system, J. Mater. Res., 23, 1095, 10.1557/jmr.2008.0130
Shim, 2003, Modified embedded-atom method calculation for the Ni–W system, J. Mater. Res., 18, 1863, 10.1557/JMR.2003.0260
Do, 2009, Atomistic modeling of III-V nitrides: modified embedded-atom method interatomic potentials for GaN, InN and Ga1−xInxN, J. Phys.: Condens. Matter, 21, 325801, 10.1088/0953-8984/21/32/325801
Gavriljuk, 1999
Schiøtz, 1998, Softening of nanocrystalline metals at very small grain sizes, Nature, 391, 561, 10.1038/35328
S.G. Kim, Kunsan National University, country-regionKorea, unpublished work.
H.-K. Kim, W.-S. Ko, H.-J. Lee, S.G. Kim, B.-J. Lee, An identification scheme of grain boundaries and construction of grain boundary energy database (2010) (submitted for publication).
Lee, 2004, Computation of grain boundary energies, Model. Simul. Mater. Sci. Eng., 42, 621, 10.1088/0965-0393/12/4/005
Wen, 2001, Embedded-atom-method functions for the body-centered-cubic iron and hydrogen, J. Mater. Res., 16, 3496, 10.1557/JMR.2001.0480
Baskes, 1994, Modified embedded atom potentials for HCP metals, Model. Simul. Mater. Sci. Eng., 2, 147, 10.1088/0965-0393/2/1/011
Kerisit, 2008, A shell model for atomistic simulation of charge transfer in titania, J. Phys. Chem. C, 112, 7678, 10.1021/jp8007865
Gale, 2003, The general utility lattice program (GULP), Molecular Simul., 29, 291, 10.1080/0892702031000104887
van Duin, 2003, ReaxFFSiO reactive force field for silicon and silicon oxide systems, J. Phys. Chem. A, 107, 3803, 10.1021/jp0276303
Yu, 2007, Charge optimized many-body potential for the Si/SiO2 system, Phy. Rev. B, 75, 085311, 10.1103/PhysRevB.75.085311
Baskes, 1996
Dudarev, 2005, A ‘Magnetic’ interatomic potential for molecular dynamics simulations, J. Phys.: Condens. Matter, 17, 7097, 10.1088/0953-8984/17/44/003
Müller, 2007, Analytic bond-order potential for BCC and FCC iron—comparison with established embedded-atom method potentials, J. Phys.: Condens. Matter, 19, 326220, 10.1088/0953-8984/19/32/326220