The modified embedded-atom method interatomic potentials and recent progress in atomistic simulations

Byeong‐Joo Lee1, Won‐Seok Ko1, Hyun-Kyu Kim1, Eunha Kim1
1Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Daw, 1993, The embedded-atom method: a review of theory and applications, Mater. Sci. Rep., 9, 251, 10.1016/0920-2307(93)90001-U

Lee, 2009, A semi-empirical atomistic approach in materials research, J. Phase Equilib. and Diff., 30, 509, 10.1007/s11669-009-9565-3

Kohlhoff, 1991, Crack propagation in bcc crystals studied with a combined finite-element and atomistic model, Philos. Mag. A, 64, 851, 10.1080/01418619108213953

Curtin, 2003, Atomistic/continuum coupling in computational materials science, Model. Simul. Mater. Sci. Eng., 11, R33, 10.1088/0965-0393/11/3/201

Kubin, 1992, The modelling of dislocation patterns, Scripta Met., 27, 957, 10.1016/0956-716X(92)90456-O

Van der Giessen, 1995, Discrete dislocation plasticity: a simple planar model, Model. Simul. Mater. Sci. Eng., 3, 689, 10.1088/0965-0393/3/5/008

Carlsson, 1990

Daw, 1984, Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B, 29, 6443, 10.1103/PhysRevB.29.6443

Finnis, 1984, A simple empirical N-body potential for transition metals, Philos. Mag. A, 50, 45, 10.1080/01418618408244210

Ercolessi, 1986, Au (100) surface reconstruction, Phys. Rev. Lett., 57, 719, 10.1103/PhysRevLett.57.719

Tersoff, 1988, New empirical approach for the structure and energy of covalent systems, Phys. Rev. B, 37, 6991, 10.1103/PhysRevB.37.6991

Rosato, 1989, Thermodynamical and structural properties of fcc transition metals using a simple tight-binding model, Philos. Mag. A, 59, 321, 10.1080/01418618908205062

Brenner, 1990, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Phys. Rev. B, 42, 9458, 10.1103/PhysRevB.42.9458

Stuart, 2000, A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys., 112, 6472, 10.1063/1.481208

van Duin, 2001, ReaxFF: a reactive force field for hydrocarbons, J. Phys. Chem. A, 105, 9396, 10.1021/jp004368u

Baskes, 1992, Modified embedded-atom method potentials for cubic materials and impurities, Phys. Rev. B, 46, 2727, 10.1103/PhysRevB.46.2727

Lee, 2000, Second nearest-neighbor modified embedded-atom method potential, Phys. Rev. B, 62, 8564, 10.1103/PhysRevB.62.8564

Lee, 2001, Second nearest-neighbor modified embedded atom method potentials for BCC transition metals, Phys. Rev. B, 64, 184102, 10.1103/PhysRevB.64.184102

Lee, 2003, Semi-empirical atomic potentials for the FCC Metals Cu, Ag, Au, Ni, Pd, Pt, Al and Pb based on first and second nearest-neighbor modified embedded atom method, Phys. Rev. B, 68, 144112, 10.1103/PhysRevB.68.144112

Kim, 2006, Modified embedded atom method interatomic potentials for Ti and Zr, Phys. Rev. B, 74, 014101, 10.1103/PhysRevB.74.014101

Kim, 2009, Atomistic modeling of pure Mg and Mg–Al system, CALPHAD, 33, 650, 10.1016/j.calphad.2009.07.004

Kim, 2009, Modified embedded-atom method interatomic potentials for pure Mn and Fe–Mn System, Acta Mater., 57, 474, 10.1016/j.actamat.2008.09.031

Lee, 2005, A modified embedded atom method interatomic potential for carbon, CALPHAD, 29, 7, 10.1016/j.calphad.2005.02.003

Lee, 2007, A modified embedded atom method interatomic potential for silicon, CALPHAD, 31, 95, 10.1016/j.calphad.2006.10.002

Kim, 2008, A modified embedded atom method interatomic potential for germanium, CALPHAD, 32, 34, 10.1016/j.calphad.2007.12.003

Rose, 1984, Universal features of the equation of state of metals, Phys. Rev. B, 29, 2963, 10.1103/PhysRevB.29.2963

Baskes, 1997, Determination of modified embedded atom method parameters for nickel, Mater. Chem. Phys., 50, 152, 10.1016/S0254-0584(97)80252-0

Lee, 2006, A modified embedded-atom method interatomic potential for the Fe–N System: a comparative study with the Fe–C system, Acta Mater., 54, 4597, 10.1016/j.actamat.2006.06.003

Kim, 2009, Modified embedded-atom method interatomic potentials for the Fe–Ti–C and Fe–Ti–N systems, Acta Mater., 57, 3140, 10.1016/j.actamat.2009.03.019

Lee, 2006, A modified embedded atom method interatomic potential for the Fe–C system, Acta Mater., 54, 701, 10.1016/j.actamat.2005.09.034

Kim, 2008, Modified embedded-atom method interatomic potentials for the Ti–C and Ti–N systems, Acta Mater., 56, 3481, 10.1016/j.actamat.2008.03.027

Sa, 2008, Modified embedded-atom method interatomic potentials for the Fe–Nb and Fe–Ti systems, Scripta Mater., 59, 595, 10.1016/j.scriptamat.2008.05.007

Kim, 2010, Modified embedded-atom method interatomic potentials for the Nb–C, Nb–N, Fe–Nb–C and Fe–Nb–N systems, J. Mater. Res., 25, 1288, 10.1557/JMR.2010.0182

Sundquist, 1964, A direct determination of the anisotropy of the surface free energy of solid gold, silver, copper, nickel, and alpha and gamma iron, Acta Metall., 12, 67, 10.1016/0001-6160(64)90055-0

Grenga, 1976, Surface energy anisotropy of iron, Surf. Sci., 61, 283, 10.1016/0039-6028(76)90422-2

Do, 2008, A modified embedded atom method interatomic potential for indium, CALPHAD, 32, 82, 10.1016/j.calphad.2007.08.004

B.-J. Lee, Pohang University of Science and Technology (POSTECH), Korea, unpublished work.

Lee, 2007, A modified embedded-atom method interatomic potential for the Fe–H system, Acta Mater., 55, 6779, 10.1016/j.actamat.2007.08.041

J.-H. Shim, Korea Institute of Science and Technology (KIST), Korea, unpublished work.

Lee, 2010, Modified embedded-atom method interatomic potential for the Fe–Al system, J. Phys.: Condens. Matter, 22, 175702, 10.1088/0953-8984/22/17/175702

Lee, 2001, A semi-empirical atomic potential for the Fe–Cr binary system, CALPHAD, 25, 527, 10.1016/S0364-5916(02)00005-6

Lee, 2005, An MEAM interatomic potential for the Fe–Cu alloy system and cascade simulation on pure Fe and Fe–Cu alloy, Phys. Rev. B, 71, 184205, 10.1103/PhysRevB.71.184205

Kim, 2006, Modified embedded-atom method interatomic potential for the Fe–Pt alloy system, J. Mater. Res., 21, 199, 10.1557/jmr.2006.0008

Kang, 2009, An atomistic modeling of the Cu–Zr–Ag bulk metallic glass system, Scripta Mater., 61, 801, 10.1016/j.scriptamat.2009.07.002

Agren, 2007, Applications of computational thermodynamics — the extension from phase equilibrium to phase transformations and other properties, CALPHAD, 31, 53, 10.1016/j.calphad.2006.02.006

Lee, 2004, A modified embedded atom method interatomic potential for the Cu–Ni System, CALPHAD, 28, 125, 10.1016/j.calphad.2004.06.001

Kim, 2007, A semi-empirical interatomic potential for the Cu–Ti binary system, Mater. Sci. Eng. A, 449

Kim, 2008, A modified embedded-atom method interatomic potential for the Cu–Zr system, J. Mater. Res., 23, 1095, 10.1557/jmr.2008.0130

Shim, 2003, Modified embedded-atom method calculation for the Ni–W system, J. Mater. Res., 18, 1863, 10.1557/JMR.2003.0260

Do, 2009, Atomistic modeling of III-V nitrides: modified embedded-atom method interatomic potentials for GaN, InN and Ga1−xInxN, J. Phys.: Condens. Matter, 21, 325801, 10.1088/0953-8984/21/32/325801

Gavriljuk, 1999

Schiøtz, 1998, Softening of nanocrystalline metals at very small grain sizes, Nature, 391, 561, 10.1038/35328

S.G. Kim, Kunsan National University, country-regionKorea, unpublished work.

H.-K. Kim, W.-S. Ko, H.-J. Lee, S.G. Kim, B.-J. Lee, An identification scheme of grain boundaries and construction of grain boundary energy database (2010) (submitted for publication).

Lee, 2004, Computation of grain boundary energies, Model. Simul. Mater. Sci. Eng., 42, 621, 10.1088/0965-0393/12/4/005

Wen, 2001, Embedded-atom-method functions for the body-centered-cubic iron and hydrogen, J. Mater. Res., 16, 3496, 10.1557/JMR.2001.0480

Baskes, 1994, Modified embedded atom potentials for HCP metals, Model. Simul. Mater. Sci. Eng., 2, 147, 10.1088/0965-0393/2/1/011

Kerisit, 2008, A shell model for atomistic simulation of charge transfer in titania, J. Phys. Chem. C, 112, 7678, 10.1021/jp8007865

Gale, 2003, The general utility lattice program (GULP), Molecular Simul., 29, 291, 10.1080/0892702031000104887

van Duin, 2003, ReaxFFSiO reactive force field for silicon and silicon oxide systems, J. Phys. Chem. A, 107, 3803, 10.1021/jp0276303

Yu, 2007, Charge optimized many-body potential for the Si/SiO2 system, Phy. Rev. B, 75, 085311, 10.1103/PhysRevB.75.085311

Baskes, 1996

Dudarev, 2005, A ‘Magnetic’ interatomic potential for molecular dynamics simulations, J. Phys.: Condens. Matter, 17, 7097, 10.1088/0953-8984/17/44/003

Müller, 2007, Analytic bond-order potential for BCC and FCC iron—comparison with established embedded-atom method potentials, J. Phys.: Condens. Matter, 19, 326220, 10.1088/0953-8984/19/32/326220

Baskes, 1999, Atomic potentials for the molybdenum–silicon system, Mater. Sci. Eng. A, 261, 165, 10.1016/S0921-5093(98)01062-4