The mitogenomic contributions to molecular phylogenetics and evolution of fishes: a 15-year retrospect

Ichthyological Research - Tập 62 - Trang 29-71 - 2014
Masaki Miya1, Mutsumi Nishida2,3
1Department of Zoology, Natural History Museum and Institute, Chiba, Chiba, Japan
2University of the Ryukyus, Okinawa, Japan
3Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan

Tóm tắt

This review summarizes the achievements and novel perspectives that our fish mitochondrial genome (mitogenome) project has brought to molecular phylogenetics and evolution of fishes during the last 15 years (1999–2014). To date, we have assembled ≈1,340 whole mitogenome sequences from fishes, publishing 83 mitogenomic papers on all major fish lineages (except agnathans). Those papers have been cited 5,303 times in total as of 30 September 2014 and have been featured in many textbooks and scientific articles as well as various media. These results have not only had a significant impact on the scientific community, but also attracted considerable attention from the general public. The success of the project largely owes to our own development of a novel, PCR-based approach for sequencing whole mitogenomes (ca. 16,500 bp), which opened a new avenue toward addressing higher-level relationships of fishes based on longer DNA sequences from a number of taxa. Shortly after the development of the method, we explicitly demonstrated the phylogenetic utility of mitogenomic data and actually resolved a long-standing issue in basal teleostean relationships. On the basis of those encouraging results from the initial studies, we published a series of four mitogenomic papers in 2003, which together encompass the whole of actinopterygian diversity and provided a “big picture” phylogenetic framework for the group. Those four studies offered a useful phylogenetic basis for subsequent studies (i.e., with a different choice of outgroups and targeted taxa) and have facilitated massive sequencing efforts for a wide variety of fishes from chondrichthyians to higher teleosts living in diverse habitats from freshwaters to the deep sea. We highlight some of the 83 mitogenomic papers by subject and briefly refer to the phylogenetic and evolutionary significances of those studies. Finally, we argue that intensive taxonomic sampling from an interface between species and populations together with the massive character sampling from mitogenome sequences using next-generation sequencing (NGS) technologies would enable simultaneous attempts to delimit species boundaries and to reconstruct evolutionary relationships at much finer scale, eventually unraveling the fish part of the Tree of Life in a bottom-up manner with more accurate estimations of species diversity.

Tài liệu tham khảo

Arratia G (1997) Basal teleosts and teleostean phylogeny. Palaeo-Ichthyology 7:5–168 Asai T, Senou H, Hosoya K (2011) Oryzias sakaizumii, a new ricefish from northern Japan (Teleostei: Adrianichthyidae). Ichthyol Explor Freshwat 22:289–299 Aschliman NC, Nishida M, Miya M, Inoue JG, Rosana KM, Naylor GJ (2012) Body plan convergence in the evolution of skates and rays (Chondrichthyes: Batoidea). Mol Phylogenet Evol 63:28–42 Avise JC (1994) Molecular markers, natural history and evolution. Chapman & Hall, New York Azuma Y, Kumazawa Y, Miya M, Mabuchi K, Nishida M (2008) Mitogenomic evaluation of the historical biogeography of cichlids toward reliable dating of teleostean divergences. BMC Evol Biol 8:215. doi:10.1186/1471-2148-8-215 Begle DP (1991) Relationships of the osmeroid fishes and the use of reductive characters in phylogenetic analysis. Syst Zool 40:33–53 Begle DP (1992) Monophyly and relationships of the argentinoid fishes. Copeia 1992:350–366 Benton MJ (2009) Vertebrate palaeontology, third ed. Blackwell, Malden, MA Benton MJ, Donoghue PCJ, Asher RJ (2009) Calibrating and constraining molecular clocks. In: Hedges SB, Kumar S (eds) Timetree of life. Oxford University Press, Oxford, UK, pp 35–86 Berg LS (1940) Classification of fishes both recent and fossil. Trav Inst Zool Acad Sci USSR 5:87–517 Bernardi G, D’Onofrio G, Bernardi G (1993) Molecular phylogeny of bony fishes, based on the amino acid sequence of the growth hormone. J Mol Evol 37:644–649 Betancur-R. R, Broughton RE, Wiley EO, Carpenter K, López JA, Li C, Holcroft NI, Arcila D, Sanciangco M, Cureton II JC, Zhang F, Buser T, Campbell MA, Ballesteros JA, Roa-Varon A, Willis S, Borden WC, Rowley T, Reneau PC, Hough DJ, Lu G, Grande T, Arratia G, Ortí G (2013a) The tree of life and a new classification of bony fishes. PLoS Currents Tree of Life. doi:10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288 Betancur-R. R, Li C, Munroe TA, Ballesteros JA, Ortí G (2013b) Addressing gene tree discordance and non-stationarity to resolve a multi-locus phylogeny of the flatfishes (Teleostei: Pleuronectiformes). Syst Biol 62:763–785 Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780 Borden WC, Grande T, Smith WL (2013) Comparative osteology and myology of the caudal fin in the Paracanthopterygii (Teleostei: Acanthomorpha). In: Arratia G, Schultze H-P, Wilson MVH (eds) Mesozoic fishes 5. Verlag Dr. Friedrich Pfeil, München, pp 419–455 Briggs JC (2007) Marine longitudinal biodiversity: causes and conservation. Divers Distrib 13:544–555 Broughton RE (2010) Phylogeny of teleosts based on mitochondrial genome sequences. In: Nelson JS, Shultze H-S, Wilson MVH (eds) Origin and phylogenetic interrelationships of teleosts. Verlag Dr. Friedrich Pfeil, München, pp 61–76 Broughton RE, Betancur-R R, Li C, Arratia G, Ortí G (2013) Multi-locus phylogenetic analysis reveals the pattern and tempo of bony fish evolution. PLoS Currents Tree of Life. doi:10.1371/currents.tol.2ca8041495ffafd0c92756e75247483e Brown JW, Rest JS, García-Moreno J, Sorenson MD, Mindell DP (2008) Strong mitochondrial DNA support for a Cretaceous origin of modern avian lineages. BMC Biol 6:6. doi:10.1186/1741-7007-6-6 Campbell MA, Chen W-J, López JA (2013a) Are flatfishes (Pleuronectiformes) monophyletic? Mol Phylogenet Evol 69:664–673 Campbell MA, López JA, Sado T, Miya M (2013b) Pike and salmon as sister taxa: detailed intraclade resolution and divergence time estimation of Esociformes + Salmoniformes based on whole mitochondrial genome sequences. Gene 530:57–65 Campbell MA, López JA, Satoh TP, Chen W-J, Miya M (2014) Mitochondrial genomic investigation of flatfish monophyly. Gene 551:176–182 Chanet B, Guintard C, Betti E, Gallut C, Dettaï A, Lecointre G (2013) Evidence for a close phylogenetic relationship between the teleost orders Tetraodontiformes and Lophiiformes based on an analysis of soft anatomy. Cybium 37:179–198 Chang YS, Huang FL, Lo TB (1994) The complete nucleotide sequence and gene organization of carp (Cyprinus carpio) mitochondrial genome. J Mol Evol 38:138–155 Chen J-N, López JA, Lavoué S, Miya M, Chen W-J (2013) Phylogeny of the Elopomorpha (Teleostei): evidence from six nuclear and mitochondrial markers. Mol Phylogenet Evol 70:152–161 Chen W-J, Bonillo C, Lecointre G (2003) Repeatability of clades as a criterion of reliability: a case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa. Mol Phylogenet Evol 26:262–288 Cheng S, Chang SY, Gravitt P, Respess R (1994) Long PCR. Nature 369:684–685 Chow S, Kurogi H, Mochioka N, Kaji S, Okazaki M, Tsukamoto K (2009) Discovery of mature freshwater eels in the open ocean. Fish Sci 75:257–259 Comber SC, Smith C (2004) Polyploidy in fishes: patterns and processes. Biol J Linn Soc 82:431–442 Cracraft J (2004) Assembling the Tree of Life: where we stand at the beginning of the 21st century. In: Cracraft J, Donoghue MJ (eds) Assembling the Tree of Life. Oxford University Press, NY, pp 553–559 Crête-Lafrenière A, Weir LK, Bernatchez L (2012) Framing the Salmonidae family phylogenetic portrait: a more complete picture from increased taxon sampling. PLoS ONE 7:e46662. doi:10.1371/journal.pone.0046662 Curole J, Kocher T (1999) Mitogenomics: digging deeper with complete mitochondrial genomes. Trends Ecol Evol 14:394–398 Dettaï A, Lecointre G (2005) Further support for the clades obtained by multiple molecular phylogenies in the acanthomorph bush. C R Biol 328:674–689 Didier DA (2004) Phylogeny and classification of extant Holocephali. In: Carrier JC, Musick JA, Heithanus MR (eds) Biology of sharks and their relatives. CRC Press, London, pp 115–135 Doosey MH, Bart HLJ, Saitoh K, Miya M (2010) Phylogenetic relationships of catostomid fishes (Actinopterygii: Cypriniformes) based on mitochondrial ND4/ND5 gene sequences. Mol Phylogenet Evol 54:1028–1034 Dowling T, Moritz C, Palmer J, Rieseberg L (1996) Nucleic acids III. Analysis of fragments and restriction sites. In: Hillis D, Moritz C, Mable B (eds) Molecular systematics. Sinauer Associates, Sunderland, MA, pp 249–320 Faircloth BC, Sorenson L, Santini F, Alfaro ME (2013) A phylogenomic perspective on the radiation of ray-finned fishes based upon targeted sequencing of ultraconserved elements (UCEs). PLoS ONE 8:e65923. doi:10.1371/journal.pone.0065923 Fink WL (1984) Basal euteleosts: relationships. In: Moser HG, Richards WJ, Cohen DM, Fahay MP, Kendall Jr AW, Richardson SL (eds) Ontogeny and systematics of fishes. Am. Soc. Ichthyol. Herpetol. Spec. Publ. 1, Lawrence, KS, pp 202–206 Fink WL, Weitzman SH (1982) Relationships of stomiiform fishes (Teleostei), with a description of Diplophos. Bull Mus Comp Zool 150:31–93 Freihofer WC (1963) Patterns of the ramus lateralis accessorius and their systematic significance in teleostean fishes. Stanford Ichthyol Bull 8:80–189 Friedman M (2009) Ecomorphological selectivity among marine teleost fishes during the end-Cretaceous extinction. Proc Natl Acad Sci USA 106:5218–5223 Friedman M, Keck BP, Dornburg A, Eytan RI, Martin CH, Hulsey CD, Wainwright PC, Near TJ (2013) Molecular and fossil evidence place the origin of cichlid fishes long after Gondwanan rifting. Proc R Soc B 280:20131733 Futuyma DJ (2013) Evolution. Sinauer Associates, Sunderland, MA Grande L (2010) An empirical synthetic pattern study of gars (Lepisosteiformes) and closely related species, based mostly on skeletal anatomy: The resurrection of Holostei. Am. Soc. Ichthyol. Herpetol. Spec. Publ. 6, Lawrence, KS Grande T, Borden WC, Smith WL (2013) Limits and relationships of Paracanthopterygii: A molecular framework for evaluating past morphological hypotheses. In: Arratia G, Schultze H-P, Wilson MVH (eds) Mesozoic fishes 5. Verlag Dr. Friedrich Pfeil, München, pp 385–418 Greenwood PHJ (1973) Interrelationships of osteoglossomorphs. In: Greenwood PHJ, Miles RS, Patterson C (eds) Interrelationships of fishes. Academic Press, London, pp 307–332 Greenwood PHJ, Rosen DE, Weitzman SH, Myers GS (1966) Phyletic studies of teleostean fishes, with a provisional classification of living forms. Bull Am Mus Nat Hist 131:339–456 Grogan D, Lund R (2004) The origin and relationships of early Chondrichthyes. In: Carrier JC, Musick JA, Heithanus MR (eds) Biology of sharks and their relatives. CRC Press, London, pp 3–31 Harrison GL, McLenachan PA, Phillips MJ, Slack KE, Cooper A, Penny D (2004) Four new avian mitochondrial genomes help get to basic evolutionary questions in the late Cretaceous. Mol Biol Evol 21:974–983 Hebert PD, Cywinska A, Ball SL (2003) Biological identifications through DNA barcodes. Proc R Soc B 270:313–321 Helfman GS, Collette BB, Facey DE, Bowen BW (2009) The diversity of fishes. Wiley-Blackwell, Oxford Hennig W (1966) Phylogenetic systematics. University of Illinois Press, Urbana, IL Hillis DM (1998) Taxonomic sampling, phylogenetic accuracy, and investigator bias. Syst Biol 47:3–8 Hirayama M, Mukai T, Miya M, Murata Y, Sekiya Y, Yamashita T, Nishida M, Watabe S, Oda S, Mitani H (2010) Intraspecific variation in the mitochondrial genome among local populations of Medaka Oryzias latipes. Gene 457:13–24 Holcroft N (2004) A molecular test of alternative hypotheses of tetraodontiform (Acanthomorpha: Tetraodontiformes) sister group relationships using data from the RAG1 gene. Mol Phylogenet Evol 32:749–760 Howlett R (2009) Taxonomy: Three into one will go. Nature 457:973 Hurley I, Mueller R, Dunn K, Schmidt E, Friedman M, Ho R, Prince V, Yang Z, Thomas M, Coates M (2007) A new time-scale for ray-finned fish evolution. Proc R Soc B 274:489–498 Imoto JM, Saitoh K, Sasaki T, Yonezawa T, Adachi J, Kartavtsev YP, Miya M, Nishida M, Hanzawa N (2013) Phylogeny and biogeography of highly diverged freshwater fish species (Leuciscinae, Cyprinidae, Teleostei) inferred from mitochondrial genome analysis. Gene 514:112–124 Inoue JG, Miya M, Tsukamoto K, Nishida M (2000a) Complete mitochondrial DNA sequence of the Japanese eel, Anguilla japonica. Fish Sci 67:118–125 Inoue JG, Miya M, Tsukamoto K, Nishida M (2000b) Complete mitochondrial DNA sequence of the Japanese sardine, Sardinops melanostictus. Fish Sci 66:924–932 Inoue JG, Miya M, Tsukamoto K, Nishida M (2001a) Complete mitochondrial DNA sequence of Conger myriaster (Teleostei: Anguilliformes): novel gene order for vertebrate mitochondrial genomes and the phylogenetic implications for anguilliform families. J Mol Evol 52:311–320 Inoue JG, Miya M, Tsukamoto K, Nishida M (2001b) Complete mitochondrial DNA sequence of the Japanese anchovy, Engraulis japonicus. Fish Sci 67:828–835 Inoue JG, Miya M, Tsukamoto K, Nishida M (2001c) A mitogenomic perspective on the basal teleostean phylogeny: resolving higher-level relationships with longer DNA sequences. Mol Phylogenet Evol 20:275–285 Inoue JG, Miya M, Tsukamoto K, Nishida M (2003a) Basal actinopterygian relationships: a mitogenomic perspective on the phylogeny of the “ancient fish”. Mol Phylogenet Evol 26:110–120 Inoue JG, Miya M, Tsukamoto K, Nishida M (2003b) Evolution of the deep-sea gulper eel mitochondrial genomes: large-scale gene rearrangements originated within the eels. Mol Biol Evol 20:1917–1924 Inoue JG, Miya M, Tsukamoto K, Nishida M (2004) Mitogenomic evidence for the monophyly of elopomorph fishes (Teleostei) and the evolutionary origin of the leptocephalus larva. Mol Phylogenet Evol 32:274–286 Inoue JG, Miya M, Venkatesh B, Nishida M (2005) The mitochondrial genome of Indonesian coelacanth Latimeria menadoensis (Sarcopterygii: Coelacanthiformes) and divergence time estimation between the two coelacanths. Gene 349:227–235 Inoue JG, Kumazawa Y, Miya M, Nishida M (2009) The historical biogeography of the freshwater knifefishes using mitogenomic approaches: a Mesozoic origin of the Asian notopterids (Actinopterygii: Osteoglossomorpha). Mol Phylogenet Evol 51:486–499 Inoue J, Donoghue PCJ, Yang Z (2010a) The impact of the representation of fossil calibrations on Bayesian estimation of species divergence times. Syst Biol 59:74–89 Inoue JG, Miya M, Lam K, Tay B-H, Danks JA, Bell J, Walker TI, Venkatesh B (2010b) Evolutionary origin and phylogeny of the modern holocephalans (Chondrichthyes: Chimaeriformes): a mitogenomic perspective. Mol Biol Evol 27:2576–2586 Inoue JG, Miya M, Miller MJ, Sado T, Hanel R, Hatooka K, Aoyama J, Minegishi Y, Nishida M, Tsukamoto K (2010c) Deep-ocean origin of the freshwater eels. Biol Lett 6:363–366 Ishiguro NB, Miya M, Nishida M (2001) Complete mitochondrial DNA sequence of ayu Plecoglossus altivelis. Fish Sci 67:474–481 Ishiguro NB, Miya M, Nishida M (2003) Basal euteleostean relationships: a mitogenomic perspective on the phylogenetic reality of the “Protacanthopterygii”. Mol Phylogenet Evol 27:476–488 Ishiguro NB, Miya M, Inoue JG, Nishida M (2005) Sundasalanx (Sundasalangidae) is a progenetic clupeiform, not a closely-related group of salangids (Osmeriformes): mitogenomic evidence. J Fish Biol 67:561–569 Ishikawa Y (2000) Medakafish as a model system for vertebrate developmental genetics. Bioessays 22:487–495 Iwasaki W, Fukunaga T, Isagozawa R, Yamada K, Maeda Y, Satoh TP, Sado T, Mabuchi K, Takeshima H, Miya M, Nishida M (2013) MitoFish and MitoAnnotator: a mitochondrial genome database of fish with an accurate and automatic annotation pipeline. Mol Biol Evol 30:2531–2540 Jacobsen MW, Hansen MM, Orlando L, Bekkevold D, Bernatchez L, Willerslev E, Gilbert MTP (2012) Mitogenome sequencing reveals shallow evolutionary histories and recent divergence time between morphologically and ecologically distinct European whitefish (Coregonus spp.). Mol Ecol 21:2727–2742 Johansen S, Bakke I (1996) The comlete mitochondrial DNA sequence of Atlantic cod (Gadus morhua): relevance to taxonomic studies among codfishes. Mol Mar Biol Biotechnol 5:203–214 Johnson GD (1992) Monophyly of the euteleostean clades—Neoteleostei, Eurypterygii, and Ctenosquamata. Copeia 1992:8–25 Johnson GD (1993) Percomorph phylogeny: progress and problems. Bull Mar Sci 52:3–28 Johnson GD, Patterson C (1993) Percomorph phylogeny: a survey of acanthomorphs and a new proposal. Bull Mar Sci 52:554–626 Johnson GD, Patterson C (1996) Relationships of lower euteleostean fishes. In: Stiassny MLJ, Parenti LR, Johnson GD (eds) Interrelationships of fishes. Academic Press, San Diego, CA, pp 251–332 Johnson GD, Paxton JR, Sutton TT, Satoh TP, Sado T, Nishida M, Miya M (2009) Deep-sea mystery solved: astonishing larval transformations and extreme sexual dimorphism unite three fish families. Biol Lett 5:232–239 Johnson GD, Ida H, Skaue J, Sado T, Asahida T, Miya M (2012) A ‘living fossil’ eel (Anguilliformes: Protanguillidae, fam. nov.) from an undersea cave in Palau. Proc R Soc B 279:934–943 Kawaguchi A, Miya M, Nishida M (2001) Complete mitochondrial DNA sequence of Aulopus japonicus (Teleostei: Aulopiformes), a basal Eurypterygii: longer DNA sequences and the higher-level relationships. Ichthyol Res 48:213–223 Kawahara R, Miya M, Mabuchi K, Lavoué S, Inoue JG, Satoh TP, Kawaguchi A, Nishida M (2008) Interrelationships of the 11 gasterosteiform families (sticklebacks, pipefishes, and their relatives): a new perspective based on whole mitogenome sequences from 75 higher teleosts. Mol Phylogenet Evol 46:224–236 Kawahara R, Miya M, Mabuchi K, Near T, Nishida M (2009) Stickleback phylogenies resolved: evidence from mitochondrial genomes and 11 nuclear genes. Mol Phylogenet Evol 50:401–404 Kobayasi H, Kawashima Y, Takeuchi N (1970) Comparative chromosome studies in the genus Carassius, especially with a finding of polyploidy in the ginbuna (C. auratus langsdorfii). Jpn J Ichthyol 17:153–160 Kumazawa Y, Nishida M (1993) Sequence evolution of mitochondrial tRNA genes and deep-branch animal phylogenetics. J Mol Evol 37:380–398 Kumazawa Y, Nishida M (1995) Variations in mitochondrial tRNA gene organization of reptiles as phylogenetic markers. Mol Biol Evol 12:759–772 Lauder GV, Liem KF (1983) The evolution and interrelationships of the actinopterygian fishes. Bull Mus Comp Zool 150:95–197 Lavoué S, Miya M, Inoue JG, Saitoh K, Ishiguro NB, Nishida M (2005) Molecular systematics of the gonorynchiform fishes (Teleostei) based on whole mitogenome sequences: implications for higher-level relationships within the Otocephala. Mol Phylogenet Evol 37:165–177 Lavoué S, Miya M, Saitoh K, Ishiguro N, Nishida M (2007) Phylogenetic relationships among anchovies, sardines, herrings and their relatives (Clupeiformes), inferred from whole mitogenome sequences. Mol Phylogenet Evol 43:1096–1105 Lavoué S, Miya M, Kawaguchi A, Yoshino T, Nishida M (2008a) The phylogenetic position of an undescribed paedomorphic clupeiform taxon: mitogenomic evidence. Ichthyol Res 55:328–334 Lavoué S, Miya M, Poulsen JY, Møller PR, Nishida M (2008b) Monophyly, phylogenetic position and inter-familial relationships of the Alepocephaliformes (Teleostei) based on whole mitogenome sequences. Mol Phylogenet Evol 47:1111–1121 Lavoué S, Miya M, Nishida M (2010) Mitochondrial phylogenomics of anchovies (family Engraulidae) and recurrent origins of pronounced miniaturization in the order Clupeiformes. Mol Phylogenet Evol 56:480–485 Lavoué S, Miya M, Arnegard ME, McIntyre PB, Mamonekene V, Nishida M (2011) Remarkable morphological stasis in an extant vertebrate despite tens of millions of years of divergence. Proc R Soc B 278:1003–1008 Lavoué S, Miya M, Arnegard ME, Sullivan JP, Hopkins CD, Nishida M (2012a) Comparable ages for the independent origins of electrogenesis in African and South American weakly electric fishes. PLoS ONE 7:e36287. doi:10.1371/journal.pone.0036287 Lavoué S, Miya M, Moritz T, Nishida M (2012b) A molecular timescale for the evolution of the African freshwater fish family Kneriidae (Teleostei: Gonorynchiformes). Ichthyol Res 52:1–9 Lavoué S, Miya M, Musikasinthorn P, Chen W-J, Nishida M (2013) Mitogenomic evidence for an Indo-west Pacific origin of the Clupeoidei (Teleostei: Clupeiformes). PLoS ONE 8:e56485. doi:10.1371/journal.pone.0056485 Lavoué S, Nakayama K, Jerry DR, Yamanoue Y, Yagishita N, Suzuki N, Nishida M, Miya M (2014) Mitogenomic phylogeny of the Percichthyidae and Centrarchiformes (Percomorphaceae): comparison with recent nuclear gene-based studies and simultaneous analysis. Gene 549:46–57 Lê H, Lecointre G, Perasso R (1993) A 28S rRNA-based phylogeny of the gnathostomes: first steps in the analysis of conflict and congruence with morphologically based cadograms. Mol Phylogenet Evol 2:31–51 Lecointre G, Nelson GJ (1996) Clupeomorpha, sister-group of Ostariophysi. In: Stiassny MLJ, Parenti LR, Johnson GD (eds) Interrelationships of Fishes. Academic Press, San Diego, CA, pp 193–207 Lee JS, Miya M, Lee YS, Kim CG, Park EH, Aoki Y, Nishida M (2001) The complete DNA sequence of the mitochondrial genome of the self-fertilizing fish Rivulus marmoratus (Cyprinodontiformes, Rivulidae) and the first description of duplication of a control region in fish. Gene 280:1–7 Li B, Dettaï A, Cruaud C, Couloux A, Desoutter-Meniger M, Lecointre G (2009) RNF213, a new nuclear marker for acanthomorph phylogeny. Mol Phylogenet Evol 50:345–363 Li C, Lu G, Ortí G (2008) Optimal data partitioning and a test case for ray-finned fishes (Actinopterygii) based on ten nuclear loci. Syst Biol 57:519–539 Li J, Xia R, McDowall RM, López JA, Lei G, Fu C (2010) Phylogenetic position of the enigmatic Lepidogalaxias salamandroides with comment on the orders of lower euteleostean fishes. Mol Phylogenet Evol 57:932–936 Little AG, Lougheed SC, Moyes CD (2010) Evolutionary affinity of billfishes (Xiphiidae and Istiophoridae) and flatfishes (Plueronectiformes): Independent and trans-subordinal origins of endothermy in teleost fishes. Mol Phylogenet Evol 56:897–904 Lydeard C, Roe KJ (1997) The phylogenetic utility of the mitochondrial cytochrome b gene for inferring relationships among actinopterygian fishes. In: Kocher TD, Stepien CA (eds) Molecular systematics of fishes. Academic Press, San Diego, CA, pp 285–311 Mabuchi K, Miya M, Satoh TP, Westneat MW, Nishida M (2004) Gene rearrangements and evolution of tRNA pseudogenes in the mitochondrial genome of the parrotfish (Teleostei: Perciformes: Scaridae). J Mol Evol 59:287–297 Mabuchi K, Senou H, Suzuki T, Nishida M (2005) Discovery of an ancient lineage of Cyprinus carpio from Lake Biwa, central Japan, based on mtDNA sequence data, with reference to possible multiple origins of koi. J Fish Biol 66:1516–1528 Mabuchi K, Miya M, Senou H, Suzuki T, Nishida M (2006) Complete mitochondrial DNA sequence of the Lake Biwa wild strain of common carp (Cyprinus carpio L.): further evidence for an ancient origin. Aquaculture 257:68–77 Mabuchi K, Miya M, Azuma Y, Nishida M (2007) Independent evolution of the specialized pharyngeal jaw apparatus in cichlid and labrid fishes. BMC Evol Biol 7:10. doi:10.1186/1471-2148-7-10 Macey J (1997) Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome. Mol Biol Evol 14:91–104 Machida RJ, Miya MU, Nishida M, Nishida S (2002) Complete mitochondrial DNA sequence of Tigriopus japonicus (Crustacea: Copepoda). Mar Biotechnol 4:406–417 Macqueen DJ, Johnston IA (2014) A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification. Proc R Soc B 281:20132881. doi:10.1098/rspb.2013.2881 Martin AP, Burg TM (2002) Perils of paralogy: using HSP70 genes for inferring organismal phylogenies. Syst Biol 51:570–587 Mayden RL, Tang KL, Conway KW, Freyhof J, Chamberlain S, Haskins M, Schneider L, Sudkamp M, Wood RM, Agnew M, Bufalino A, Sulaiman Z, Miya M, Saitoh K, He S (2007) Phylogenetic relationships of Danio within the order Cypriniformes: a framework for comparative and evolutionary studies of a model species. J Exp Zool B Mol Dev Evol 308B:642–654 Mayden RL, Tang KL, Wood RM, Chen W-J, Agnew MK, Conway KW, Yang L, Simons AM, Bart HL, Harris PM, Li J, Wang X, Saitoh K, He S, Liu H, Chen Y, Nishida M, Miya M (2008) Inferring the Tree of Life of the order Cypriniformes, the earth’s most diverse clade of freshwater fishes: implications of varied taxon and character sampling. J Systemat Evol 46:424–438 Mayden RL, Chen WJ, Bart HL, Doosey MH, Simons AM, Tang KL, Wood RM, Agnew MK, Yang L, Hirt MV, Clements MD, Saitoh K, Miya M, Nishida M (2009) Reconstructing the phylogenetic relationships of the earth’s most diverse clade of freshwater fishes —order Cypriniformes (Actinopterygii: Ostariophysi): A case study using multiple nuclear loci and the mitochondrial genome. Mol Phylogenet Evol 51:500–514 Meyer A (1994) Shortcomings of the cytochrome b gene as a molecular marker. Trends Ecol Evol 9:278–280 Mindell D, Sorenson M, Dimcheff D, Hasegawa M (1999) Interordinal relationships of birds and other reptiles based on whole mitochondrial genomes. Syst Biol 48:138–152 Minegishi Y, Aoyama J, Inoue JG, Miya M, Nishida M, Tsukamoto K (2005) Molecular phylogeny and evolution of the freshwater eels genus Anguilla based on the whole mitochondrial genome sequences. Mol Phylogenet Evol 34:134–146 Mittelbach GG, Schemske DW, Cornell HV, Allen AP, Brown JM, Bush MB, Harrison SP, Hurlbert AH, Knowlton N, Lessios HA (2007) Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol Lett 10:315–331 Miya M, Nishida M (1996) Molecular phylogenetic perspective on the evolution of the deep-sea fish genus Cyclothone (Stomiiformes: Gonostomatidae). Ichthyol Res 43:375–398 Miya M, Nishida M (1997) Speciation in the open ocean. Nature 389:803–804 Miya M, Nishida M (1998) Molecular phylogeny and evolution of the deep-sea fish genus Sternoptyx. Mol Phylogenet Evol 10:11–22 Miya M, Nishida M (1999) Organization of the mitochondrial genome of a deep-sea fish, Gonostoma gracile (Teleostei: Stomiiformes): first example of transfer RNA gene rearrangements in bony fishes. Mar Biotechnol 1:416–426 Miya M, Nishida M (2000a) Molecular systematics of the deep-sea fish genus Gonostoma (Stomiiformes: Gonostomatidae): two paraphyletic clades and resurrection of Sigmops. Copeia 2000:378–389 Miya M, Nishida M (2000b) Use of mitogenomic information in teleostean molecular phylogenetics: a tree-based exploration under the maximum-parsimony optimality criterion. Mol Phylogenet Evol 17:437–455 Miya M, Kawaguchi A, Nishida M (2001) Mitogenomic exploration of higher teleostean phylogenies: a case study for moderate-scale evolutionary genomics with 38 newly determined complete mitochondrial DNA sequences. Mol Biol Evol 18:1993–2009 Miya M, Takeshima H, Endo H, Ishiguro NB, Inoue JG, Mukai T, Satoh TP, Yamaguchi M, Kawaguchi A, Mabuchi K, Shirai SM, Nishida M (2003) Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Mol Phylogenet Evol 26:121–138 Miya M, Satoh TP, Nishida M (2005) The phylogenetic position of toadfishes (order Batrachoidiformes) in the higher ray-finned fish as inferred from partitioned Bayesian analysis of 102 whole mitochondrial genome sequences Biol J Linn Soc 85:289–306 Miya M, Saitoh K, Wood R, Nishida M, Mayden RL (2006) New primers for amplifying and sequencing the mitochondrial ND4/ND5 gene region of the Cypriniformes (Actinopterygii: Ostariophysi). Ichthyol Res 53:75–81 Miya M, Holcroft NI, Satoh TP, Yamaguchi M, Nishida M, Wiley EO (2007) Mitochondrial genome and a nuclear gene indicate a novel phylogenetic position of deep-sea tube-eye fish (Stylephoridae). Ichthyol Res 54:323–332 Miya M, Pietsch TW, Orr JW, Arnold RJ, Satoh TP, Shedlock AM, Ho HC, Shimazaki M, Yabe M, Nishida M (2010) Evolutionary history of anglerfishes (Teleostei: Lophiiformes): a mitogenomic perspective. BMC Evol Biol 10:58 Miya M, Friedman M, Satoh TP, Takeshima H, Sado T, Iwasaki W, Yamanoue Y, Nakatani M, Mabuchi K, Inoue JG, Poulsen JY, Fukunaga T, Nishida M (2013) Evolutionary origin of the Scombridae (tunas and mackerels): members of a Paleogene adaptive radiation with 14 other pelagic fish families. PLoS ONE 8:e73535. doi:10.1371/journal.pone.0073535 Moore WS (1995) Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees. Evolution 49:718–726 Morin PA, Archer FI, Foote AD, Vilstrup J, Allen EE, Wade P, Durban J, Parsons K, Pitman R, Li L (2010) Complete mitochondrial genome phylogeographic analysis of killer whales (Orcinus orca) indicates multiple species. Genome Res 20:908–916 Nakatani M, Miya M, Mabuchi K, Saitoh K, Nishida M (2011) Evolutionary history of Otophysi (Teleostei), a major clade of the modern freshwater fishes: Pangaean origin and Mesozoic radiation. BMC Evol Biol 11:177. doi:10.1186/1471-2148-11-177 Near TJ, Eytan RI, Dornburg A, Kuhn KL, Moore JA, Davis MP, Wainwright PC, Friedman M, Smith WL (2012) Resolution of ray-finned fish phylogeny and timing of diversification. Proc Natl Acad Sci USA 109:13698–13703 Near TJ, Dornburg A, Eytan RI, Keck BP, Smith WL, Kuhn KL, Moore JA, Price SA, Burbrink FT, Friedman M, Wainwright PC (2013) Phylogeny and tempo of diversification in the superradiation of spiny-rayed fishes. Proc Natl Acad Sci USA 110:12738–12743 Nelson GJ (1989) Phylogeny of major fish groups. In: Fernholm B, Bremer K, Jörnvall H (eds) The hierarchy of life. Excerpta Medica, Amsterdam, pp 325–336 Nelson JS (1976) Fishes of the world. John Wiley & Sons, NY Nelson JS (1984) Fishes of the world. John Wiley & Sons, NY Nelson JS (1994) Fishes of the world. John Wiley & Sons, NY Nelson JS (2006) Fishes of the world. John Wiley & Sons, Hoboken, NJ Noack K, Zardoya R, Meyer A (1996) The complete mitochondrial DNA sequence of the bichir (Polypterus ornatipinnis), a basal ray-finned fish: ancient establishment of the consensus vertebrate gene order. Genetics 144:1165–1180 Nohara M, Nishida M, Miya M, Nishikawa T (2005) Evolution of the mitochondrial genome in Cephalochordata as inferred from complete nucleotide sequences from two Epigonichthys species. J Mol Evol 60:526–537 Normark B (1991) Phylogenetic relationships of neopterygian fishes, inferred from mitochondrial DNA sequences. Mol Biol Evol 8:819–834 Olney JE, Johnson GD, Baldwin CC (1993) Phylogeny of lampridiform fishes. Bull Mar Sci 52:137–169 Ortí G, Meyer A (1997) The radiation of characiform fishes and the limits of resolution of mitochondrial ribosomal DNA sequences. Syst Biol 46:75-100 Patterson C (1973) Interrelationships of holosteans. In: Greenwood PHJ, Miles RS, Patterson C (eds) Interrelationships of fishes. Academic Press, London, pp 233–305 Patterson C, Rosen DE (1977) Review of ichthyodectiform and other Mesozoic teleost fishes and the theory and practice of classifying fossils. Bull Am Mus Nat Hist 158:81–172 Patterson C, Williams DM, Humphries CJ (1993) Congruence between molecular and morphological phylogenies. Annu Rev Ecol Syst 24:153–188 Paxton JR, Johnson GD (2005) Cetomimidae: Whalefishes; Mirapinnidae: tapetails & hairyfish; Megalomycteridae: bignose fishes. In: Richards WJ (ed) Early stages of Atlantic fishes. CRC Press, Boca Raton, FL, pp 1089–1102 Peng Z, He S, Wang J, Wang W, Diogo R (2006) Mitochondrial molecular clocks and the origin of the major otocephalan clades (Pisces: Teleostei): a new insight. Gene 370:113–124 Penny D, Hasegawa M, Waddell P, Hendy M (1999) Mammalian evolution: timing and implications from using the LogDeterminant transform for proteins of differing amino acid composition. Syst Biol 48:76–93 Philippe H, Zhou Y, Brinkmann H, Rodrigue N, Delsuc F (2005) Heterotachy and long-branch attraction in phylogenetics. BMC Evol Biol 5:50. doi:10.1186/1471-2148-5-50 Phillips M, Penny D (2003) The root of the mammalian tree inferred from whole mitochondrial genomes. Mol Phylogenet Evol 28:171–185 Pietsch TW (2009) Oceanic anglerfishes: extraordinary diversity in the deep sea. University of California Press, Berkeley, CA Poulsen JY, Møller PDR, Lavoué S, Knudsen SW, Nishida M, Miya M (2009) Higher and lower-level relationships of the deep-sea fish order Alepocephaliformes (Teleostei: Otocephala) inferred from whole mitogenome sequences. Biol J Linn Soc 98:923–936 Poulsen JY, Byrkjedal I, Willassen E, Rees D, Takeshima H, Satoh TP, Shinohara G, Nishida M, Miya M (2013) Mitogenomic sequences and evidence from unique gene rearrangements corroborate evolutionary relationships of Myctophiformes (Neoteleostei). BMC Evol Biol 13:111. doi:10.1186/1471-2148-13-111 Ramsden SD, Brinkmann H, Hawryshyn CW, Taylor JS (2003) Mitogenomics and the sister of Salmonidae. Trends Ecol Evol 18:607–610 Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574 Rosen DE (1973) Interrelationships of higher euteleostean fishes. In: Greenwood PHJ, Miles RS, Patterson C (eds) Interrelationships of fishes. Academic Press, London, pp 397–513 Rosen DE (1974) Phylogeny and zoogeography of salmoniform fishes and relationships of Lepidogalaxias salamandroides. Bull Am Mus Nat Hist 153:263–326 Rosen DE (1985) An essay on euteleostean classification. Am Mus Novit 2782:1–45 Rubin DA, Dores RM (1995) Obtaining a more resolute teleost growth hormone phylogeny by the introduction of gaps in sequence alignment. Mol Phylogenet Evol 4:129–138 Saitoh K, Miya M, Inoue JG, Ishiguro NB, Nishida M (2003) Mitochondrial genomics of ostariophysan fishes: perspectives on phylogeny and biogeography. J Mol Evol 56:464–472 Saitoh K, Sado T, Mayden RL, Hanzawa N, Nakamura K, Nishida M, Miya M (2006) Mitogenomic evolution and interrelationships of the Cypriniformes (Actinopterygii: Ostariophysi): the first evidence toward resolution of higher-level relationships of the World’s largest freshwater fish clade based on 59 whole mitogenome sequences. J Mol Evol 63:826–841 Saitoh K, Sado T, Doosey MH, Bart HLJ, Inoue JG, Nishida M, Mayden RL, Nishida M, Miya M (2011) Evidence from mitochondrial genomics supports the lower Mesozoic of South Asia as the time and place of basal divergence of cypriniform fishes (Actinopterygii: Ostariophysi). Zool J Linn Soc 161:633–662 Santini F, Sorenson L, Alfaro ME (2013) A new phylogeny of tetraodontiform fishes (Tetraodontiformes, Acanthomorpha) based on 22 loci. Mol Phylogenet Evol 69:177–187 Sato Y, Nishida M (2010) Teleost fish with specific genome duplication as unique models of vertebrate evolution. Environ Biol Fishes 88:169–188 Satoh TP, Miya M, Endo H, Nishida M (2006) Round and pointed-head grenadier fishes (Actinopterygii: Gadiformes) represent a single sister group: evidence from the complete mitochondrial genome sequences. Mol Phylogenet Evol 40:129–138 Satoh TP, Sato Y, Masuyama N, Miya M, Nishida M (2010) Transfer RNA gene arrangement and codon usage in vertebrate mitochondrial genomes: a new insight into gene order conservation. BMC Genomics 11:479. doi:10.1186/1471-2164-11-479 Setiamarga DHE, Miya M, Yamanoue Y, Mabuchi K, Satoh TP, Inoue JG, Nishida M (2008) Interrelationships of Atherinomorpha (medakas, flyingfishes, killifishes, silversides, and their relatives): the first evidence based on whole mitogenome sequences. Mol Phylogenet Evol 49:598–605 Setiamarga DHE, Miya M, Inoue JG, Ishiguro NB, Mabuchi K, Nishida M (2009) Divergence time of the two regional medaka populations in Japan as a new time scale for comparative genomics of vertebrates. Biol Lett 5:81–86 Shimodaira H (2002) An approximately unbiased test of phylogenetic tree selection. Syst Biol 51:492–508 Siebert DJ (1997) Notes on the anatomy and and relationships of Sundasalanx Roberts (Teleostei, Clupeidae), with descriptions of four new species from Borneo. Bull Nat Hist Mus (Zool Ser) 63:13–26 Simmons MP, Miya M (2004) Efficiently resolving the basal clades of a phylogenetic tree using Bayesian and parsimony approaches: a case study using mitogenomic data from 100 higher teleost fishes. Mol Phylogenet Evol 31:351–362 Simmons MP, Pickett KM, Miya M (2004) How meaningful are Bayesian support values? Mol Biol Evol 21:188–199 Smith WL, Craig MT (2007) Casting the percomorph net widely: the importance of broad taxonomic sampling in the search for the placement of serranid and percid fishes. Copeia 2007:35–55 Smith WL, Wheeler WC (2006) Venom evolution widespread in fishes: a phylogenetic road map for the bioprospecting of piscine venoms. J Hered 97:206–217 Song HY, Mabuchi K, Satoh TP, Moore JA, Yamanoue Y, Miya M, Nishida M (2014) Mitogenomic circumscription of a novel percomorph fish clade mainly comprising “Syngnathoidei” (Teleostei). Gene 542:146–155 Sorenson MD, Ast JC, Dimcheff DE, Yuri T, Mindell DP (1999) Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Mol Phylogenet Evol 12:105–114 Springer M, Amrine H, Burk A, Stanhope M (1999) Additional support for Afrotheria and Paenungulata, the performance of mitochondrial versus nuclear genes, and the impact of data partitions with heterogeneous base composition. Syst Biol 48:65–75 Springer V (1999) Are the Indonesian and western Indian Ocean coelacanths conspecific: a prediction. Environ Biol Fishes 54:453–456 Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690 Stepien CA, Kocher TD (1997) Molecules and morphology in studies of fish evolution. In: Kocher TD, Stepien CA (eds) Molecular systematics of fishes. Academic Press, San Diego, CA, pp 1–11 Stiassny MLJ (1986) The limits and relationships of the acanthomorph teleosts. J Zool 1986:411–460 Stiassny MLJ, Moore JA (1992) A review of the pelvic girdle of acanthomorph fishes, with comments on hypotheses of acanthomorph interrelationships. Zool J Linn Soc 104:209–242 Takada M, Tachihara K, Kon T, Yamamoto G, Iguchi K, Miya M, Nishida M (2010) Biogeography and evolution of the Carassius auratus-complex in East Asia. BMC Evol Biol 10:7. doi:10.1186/1471-2148-10-7 Takehana Y, Nagai N, Matsuda M, Tsuchiya K, Sakaizumi M (2003) Geographic variation and diversity of the cytochrome b gene in Japanese wild populations of medaka, Oryzias latipes. Zool Sci 20:1279–1291 Tang KL, Agnew MK, Chen W-J, Vincent Hirt M, Raley ME, Sado T, Schneider LM, Yang L, Bart HL, He S, Liu H, Miya M, Saitoh K, Simons AM, Wood R, Mayden RL (2011) Phylogeny of the gudgeons (Teleostei: Cyprinidae: Gobioninae). Mol Phylogenet Evol 61:103–124 Tang KL, Conway KW, Agnew MK, Chen W-J, Hirt MV, Sado T, Schneider LM, Freyhof J, Swartz E, Vidthayanon C, Bart HL, Miya M, Saitoh K, Simons AM, Wood RM, Mayden RL (2010) Systematics of the subfamily Danioninae (Teleostei: Cypriniformes: Cyprinidae). Mol Phylogenet Evol 57:189–214 Tang KL, Agnew MK, Hirt MV, Lumbantobing DN, Raley ME, Sado T, Teoh V-H, Yang L, Bart HL, Harris PM, He S, Miya M, Saitoh K, Simons AM, Wood RM, Mayden RL (2013) Limits and phylogenetic relationships of East Asian fishes in the subfamily Oxygastrinae (Teleostei: Cypriniformes: Cyprinidae). Zootaxa 3681:101–135 Timmermans MJ, Dodsworth S, Culverwell C, Bocak L, Ahrens D, Littlewood DT, Pons J, Vogler AP (2010) Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for molecular systematics. Nucleic Acids Res 38:e197. doi:10.1093/nar/gkq807 Tsukamoto K, Aoyama J, Miller MJ (2002) Migration, speciation, and the evolution of diadromy in anguillid eels. Can J Fish Aquat Sci 59:1989–1998 Tzeng CS, Hui CF, Shen SC, Huang PC (1992) The complete nucleotide sequence of the Crossostoma lacustre mitochondrial genome: conservation and variations among vertebrates. Nucleic Acids Res 20:4853–4858 Venkatesh B, Erdmann M, Brenner S (2001) Molecular synapomorphies resolve evolutionary relationships of extant jawed vertebrates. Proc Natl Acad Sci USA 98:11382–11387 Wainwright PC, Smith WL, Price SA, Tang KL, Sparks JS, Ferry LA, Kuhn KL, Eytan RI, Near TJ (2012) The evolution of pharyngognathy: a phylogenetic and functional appraisal of the pharyngeal jaw key innovation in labroid fishes and beyond. Syst Biol 61:1001–1027 Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Philos Trans R Soc Lond, Ser B: Biol Sci 360:1847–1857 Watanabe S, Aoyama J, Tsukamoto K (2009) A new species of freshwater eel Anguilla luzonensis (Teleostei: Anguillidae) from Luzon Island of the Philippines. Fish Sci 75:387–392 Wiley EO (1981) Phylogenetics: the theory and practice of phylogenetic systematics. Wiley & Sons, NY Williams N (2010) Deep secrets. Curr Biol 20:R43–R44 Yagishita N, Miya M, Yamanoue Y, Shirai SM, Nakayama K, Suzuki N, Satoh TP, Mabuchi K, Nishida M, Nakabo T (2009) Mitogenomic evaluation of the unique facial nerve pattern as a phylogenetic marker within the percifom fishes (Teleostei: Percomorpha). Mol Phylogenet Evol 53:258–266 Yamanoue Y, Miya M, Matsuura K, Katoh M, Sakai H, Nishida M (2004) Mitochondrial genomes and phylogeny of the ocean sunfishes (Tetraodontiformes: Molidae). Ichthyol Res 51:269–273 Yamanoue Y, Miya M, Inoue JG, Matsuura K, Nishida M (2006) The mitochondrial genome of spotted green pufferfish Tetraodon nigroviridis (Teleostei: Tetraodontiformes) and divergence time estimation among model organisms in fishes. Genes Genet Syst 81:29–39 Yamanoue Y, Miya M, Matsuura K, Yagishita N, Mabuchi K, Sakai H, Katoh M, Nishida M (2007) Phylogenetic position of tetraodontiform fishes within the higher teleosts: Bayesian inferences based on 44 whole mitochondrial genome sequences. Mol Phylogenet Evol 45:89–101 Yamanoue Y, Miya M, Matsuura K, Katoh M, Sakai H, Nishida M (2008) A new perspective on phylogeny and evolution of tetraodontiform fishes (Pisces: Acanthopterygii) based on whole mitochondrial genome sequences: basal ecological diversification? BMC Evol Biol 8:212. doi:10.1186/1471-2148-8-212 Yamanoue Y, Miya M, Matsuura K, Miyazawa S, Miyamoto N, Doi H, Takahashi H, Mabuchi K, Nishida M, Sakai H (2009a) Explosive speciation of Takifugu: another use of the fugu as a model system for evolutionary biology. Mol Biol Evol 26:623–629 Yamanoue Y, Miya M, Matsuura K, Sakai H, Katoh M, Nishida M (2009b) Unique patterns of pelvic fin evolution: a case study of balistoid fishes (Pisces: Tetraodontiformes) based on whole mitochondrial genome sequences. Mol Phylogenet Evol 50:179–189 Yamanoue Y, Miya M, Doi H, Mabuchi K, Sakai H, Nishida M (2011) Multiple invasions into freshwater by pufferfishes (Teleostei: Tetraodontidae): a mitogenomic perspective. PLoS ONE 6:e17410. doi:10.1371/journal.pone.0017410 Yamauchi MM, Miya MU, Machida RJ, Nishida M (2004a) PCR-based approach for sequencing mitochondrial genomes of decapod crustaceans, with a practical example from kuruma prawn (Marsupenaeus japonicus). Mar Biotechnol 6:419–429 Yamauchi MM, Miya MU, Nishida M (2004b) Use of a PCR-based approach for sequencing whole mitochondrial genomes of insects: two examples (cockroach and dragonfly) based on the method developed for decapod crustaceans. Insect Mol Biol 13:435–442 Yang L, Mayden RL, Sado T, He S, Saitoh K, Miya M (2010) Molecular phylogeny of the fishes traditionally referred to Cyprinini sensu stricto (Teleostei: Cypriniformes). Zool Scr 39:527–550 Yang L, Arunachalam M, Sado T, Levin BA, Golubtsov AS, Freyhof J, Friel JP, Chen W-J, Vincent Hirt M, Manickam R, Agnew MK, Simons AM, Saitoh K, Miya M, Mayden RL, He S (2012a) Molecular phylogeny of the cyprinid tribe Labeonini (Teleostei: Cypriniformes). Mol Phylogenet Evol 65:362–379 Yang L, Hirt V, Sado T, Arunachalam M, Manickam R, Tang KL, Simons AM, Wu H, Mayden R, Miya M (2012b) Phylogenetic placements of the barbin genera Discherodontus, Chagunius, and Hypselobarbus in the subfamily Cyprininae (Teleostei: Cypriniformes) and their relationships with other barbins. Zootaxa 3586:26–40 Zaragüeta-Bagils R, Lavoué S, Tillier A, Bonillo C, Lecointre G (2002) Assessment of otocephalan and protacanthopterygian concepts in the light of multiple molecular phylogenies. C R Biol 325:1191–1207 Zardoya R, Garrido-Pertierra A, Bautista JM (1995) The complete nucleotide sequence of the mitochondrial DNA genome of the rainbow trout, Oncorhynchus mykiss. J Mol Evol 41:942–951 Zardoya R, Meyer A (1996) The complete nucleotide sequence of the mitochondrial genome of the lungfish (Protopterus dolloi) supports its phylogenetic position as a close relative of land vertebrates. Genetics 142:1249–1263 Zardoya R, Meyer A (1997) The complete DNA sequence of the mitochondrial genome of a “living fossil,’’ the coelacanth (Latimeria chalumnae). Genetics 146:995–1010