The minimum distance method of testing
Tóm tắt
Từ khóa
Tài liệu tham khảo
Billingsley, P.: Convergence of Probability Measures. New York 1968.
Blackman, J.: On the approximation of a distribution function by an empirical distribution. Ann. Math. Statist.26, 1955, 256–267.
Bolthausen, E.: Convergence in distribution of minimum distance estimators. Metrika24, 1977. 215–227.
Chernoff, H., andE.L. Lehmann: The use of maximum likelihood estimates inX 2 tests for good-ness-of-fit. Ann. Math. Statist.25, 1954, 579–586.
Chibisov, D.M.: An investigation of the asymptotic power of the tests of fit. Theor. Prob. Appl.10, 1965, 421–437.
Cramér, H.: Mathematical Methods of Statistics. Princeton 1964.
Csörgő, M., andM.D. Burke: Weak approximations of the empirical process when parameters are estimated. Lect. Notes in Math.566, 1976, 1–16.
Csörgő, M. J. Komlós, P. Major, P. Révész andG. Tusnády: On the empirical process when parameters are estimated. Trans. Seventh Prague Conference 1974. Prague 1977, 87–97.
Dudley, R.M.: Weak convergence of probabilities on non-separable metric spaces and empirical measures on Euclidean spaces. Ill. J. Math.10, 1966, 109–126.
Durbin, J.: Weak convergence of the sample distribution function when parameters are estimated. Ann. Statistics1, 1973, 279–290.
Eggleston, H.G.: Convexity. Cambridge 1977.
Elker, J.D., D. Pollard andW. Stute: Glivenko-Cantelli theorems for classes of convex sets. Adv. Appl. Prob., 1979 (to appear).
Kac, M., J. Kiefer andJ. Wolfowitz: On tests of normality and other tests of goodness of fit based on distance methods. Ann. Math. Statist.26, 1955, 189–211.
Le Cam, L.: On the assumptions used to prove asymptotic normality of maximum likelihood estimates. Ann. Math. Statist.41, 1970, 802–828.
Neuhaus, G.: Asymptotic properties of the Cramér-von Mises statistic when parameters are estimated. Proc. Prague Symp. on Asymp. Stat Ed by Hájek. 1973, 257–297.
—: Weak convergence under continguous alternatives of the empirical process when parameters are estimated: theD k approach. Lect. Notes in Math.566, 1976a, 68–82.
—: Asymptotic power properties of the Cramér-von Mises test under contiguous alternatives. J. Multiv. Analysis6, 1967b, 95–110.
Neuhaus, G.: Asymptotic theory of goodness of fit tests when parameters are present: a survey. Lecture at tenth European mtg of Statisticians. Leuven 1977.
Pollard, D.: Weak convergence on non-separable metric spaces. J. Austral. Math. Soc. (Series A)28, 1979a, 197–204.
Pollard, D.: General chi-square goodness-of-fit tests with data-dependent cells. Z. Wahrscheinlichkeitstheorie verw. geb, 1979b, (to appear).
Pyke, R.: Applications of almost surely convergent constructions of weakly convergent processes. Lect. Notes in Math.89, 1969, 187–200.
Pyke, R.: Asymptotic results for rank statistics. Nonparametric Techniques in Statistical Inference. Ed. by Puri. Cambridge 1970, 21–37.
Rockafellar, R.T.: Convex Analysis. Princeton 1972.
Strassen, V.: The existence of probability measures with given marginals. Ann. Math. Statist.36, 1965, 423–439.
Wichura, M.J.: On the construction of almost uniformly convergent random variables with given weakly convergent image laws. Ann. Math. Statist.41, 1970, 284–291.
Witting, H., andG. Nölle: Angewandte Mathematische Statistik. Stuttgart 1970.