The micropolar fluid model for blood flow through a tapered artery with a stenosis

Acta Mechanica Sinica - Tập 24 Số 6 - Trang 637-644 - 2008
Kh. S. Mekheimer1, M. A. El Kot2
1Al-Azhar University.
2Suez Canal University,

Tóm tắt

Từ khóa


Tài liệu tham khảo

Mann F.G., Herrick J.F., Essex H., Blades E.J.: Effects of blood flow on decreasing the lumen of a blood vessel. Surgery 4, 249–252 (1938)

Eringen A.C.: Theory of micropolar fluid. Mech. J. Math. 16, 1–18 (1966)

Agarwal R.S., Dhanapal C.: Numerical solution to the flow of a micropolar fluid between porous walls of different permeability. Int. J. Eng. Sci. 25, 325–336 (1987)

Philip D., Chandra P.: Peristaltic transport of simple micro fluid. Proc. Natl. Acad. Sci. India 65(A), 63–74 (1995)

Young D.F.: Effect of a time dependent stenosis of flow through a tube. J. Eng. Ind. 90, 248–254 (1968)

Srivistava L.M.: Flow of couple stress fluid through stenotic blood vessels. J. Biomech. 18, 479–485 (1985)

Haldar K.: Effects of the shape of stenosis on the resistance to blood flow through an artery. Bull. Math. Biol. 47, 545–550 (1985)

Srivastava V.P.: Arterial blood flow through a nonsymmetrical stenosis with applications. Jpn. J. Appl. Phys. 34, 6539–6545 (1995)

Srivastava V.P., Saxena M.: Suspension model for blood flow through stenotic arteries with a cell-free plasma layer. Math. Biosci. 139, 79–102 (1997)

Ang K.C., Mazumdar J.N.: Mathematical modeling of three-dimentional flow through an asymmetric arterial stenosis. Math. Comput. Modell. 25, 19–29 (1997)

Chakravarty S., Mandal P.K.: Two-dimentional blood flow through tapered arteries under stenotic conditions. Int. J. Nonlin. Mech. 35, 779–793 (2000)

Liu B., Tang D.: A numerical simulation of viscous flows in collapsible tubes with stenosis. Appl. Numer. Math. 32, 87–101 (2000)

El-Shahed M.: Pulsatile flow of blood through a stenosed porous medium under periodic body acceleration. Appl. Math. Comp. 138, 479–488 (2003)

Pralhad R.N., Schulz D.H.: Modeling of arterial stenosis and its applications to blood diseases. Math. Biosci. 190, 203–220 (2004)

Jung H., Choi J.W., Park C.G.: Asymmetric flows of non-Newtonian fluids in symmetric stenosed artery. K-A Rheol. J. 16, 101–108 (2004)

Liu G.T., Wang X.J., Ai B.Q., Liu L.G.: Numerical study of pulsating flow through a tapered artery with stenosis. Chin. J. Phys. 42, 401–409 (2004)

Mandal P.K.: An unsteady of non-Newtonian blood flow through tapered arteries with a stenosis. Int. J. Nonlin. Mech. 40, 151–164 (2005)

Sankar D.S., Hemalatha K.: Pulsatile flow of Herschel-Bulkley fluid through stenosed arteries—A mathematical model. Int. J. Nonlin. Mech. 41(8), 979–990 (2006)

Siddiqui, S.U., Verma, N.K., Shailesh Mishra, Gupta, R.S.: Mathematical modelling of pulsatile flow of Casson’s fluid in arterial stenosis. Appl. Math. Comput. (2007) (in press) Corrected Proof

Mandal P.K., Chakravarty S.: Effect of body acceleration on unsteady pulsatile flow of non-newtonian fluid through a stenosed artery. Appl. Math. Comput. 189(1), 766–779 (2007)

Ismail Z., Abdullah I., Mustapha N., Amin N.: A power-law model of blood flow through a tapered overlapping stenosed artery. Appl. Math. Comput. 195(2), 669–680 (2008)

Srinivasacharya D., Mishra M., Rao A.R.: Peristaltic pumping of a micropolar fluid in a tube. Acta Mech. 161, 165–178 (2003)