The metric-valued Lebesgue differentiation theorem in measure spaces and its applications

Danka Lučić1, Enrico Pasqualetto1
1Department of Mathematics and Statistics, University of Jyvaskyla, Jyväskylä, Finland

Tóm tắt

We prove a version of the Lebesgue differentiation theorem for mappings that are defined on a measure space and take values into a metric space, with respect to the differentiation basis induced by a von Neumann lifting. As a consequence, we obtain a lifting theorem for the space of sections of a measurable Banach bundle and a disintegration theorem for vector measures whose target is a Banach space with the Radon–Nikodým property.

Từ khóa


Tài liệu tham khảo

Benyamini, Y., Lindenstrauss, J.: Geometric Nonlinear Functional Analysis. Vol. 1, vol. 48. American Mathematical Society Colloquium Publications, American Mathematical Society, Providence (2000) Bessaga, C., Pełczyński, A.: Selected Topics in Infinite-dimensional Topology. Polska Akademia Nauk. Instytut Matematyczny, Monografie matematyczne, Warsaw (1975) Bliedtner, J., Loeb, P.A.: The optimal differentiation basis and liftings of \(L^\infty \). Trans. Am. Math. Soc. 352, 4693–4710 (2000) Bochner, S.: Integration von Funktionen, deren Werte die Elemente eines Vektorraumes sind. Fundam. Math. 20, 262–276 (1933) Bogachev, V.I.: Measure Theory, vol. II. Springer, Berlin (2007) Bourbaki, N.: Topologie générale. Hermann, Paris (1965) Brena, C., Gigli, N.: Local vector measures. Preprint. arXiv:2206.14864 (2022) Bruckner, A.M.: Differentiation of integrals. Am. Math. Mon. 78, 53 (1971) Bruckner, A.M., Bruckner, J.B., Thomson, B.S.: Real Analysis. Prentice-Hall, Upper Saddle River (1997) Bruckner, A.M., Bruckner, J.B., Thomson, B.S.: Real Analysis, 2nd edn. ClassicalRealAnalysis.com, Vancouver (2008) Di Marino, S., Lučić, D., Pasqualetto, E.: Representation theorems for normed modules. Preprint. arXiv:2109.03509 (2021) Diestel, J., Uhl, J.J., Jr.: Vector Measures. American Mathematical Society, Providence (1977) Dunford, N.: Integration in general analysis. Trans. Am. Math. Soc. 37, 441–453 (1935) Dunford, N., Schwartz, J.: Linear Operators. (I): General Theory. Interscience Publishers, Pure and Applied Mathematics, New York (1958) Fremlin, D.: Measure Theory: Measure Algebras. Measure Theory, vol. 3. Torres Fremlin, Colchester (2011) Gigli, N., Lučić, D., Pasqualetto, E.: Duals and pullbacks of normed modules. Preprint. arXiv:2207.04972 (2022) Gigli, N.: Lecture notes on differential calculus on \({\sf RCD}\) spaces. Publ. Res. Inst. Math. Sci. 54, 855–918 (2018) Gigli, N.: Nonsmooth differential geometry—an approach tailored for spaces with Ricci curvature bounded from below. Mem. Am. Math. Soc. 251, 161 (2018) Graf, S., von Weizsäcker, H.: On the Existence of Lower Densities in Noncomplete Measure Spaces. Measure Theory, pp. 155–158. Springer, Berlin (1976) Guo, T.X.: Recent progress in random metric theory and its applications to conditional risk measures. Sci. China Math. 54, 633–660 (2011) Gutman, A.E.: Banach bundles in the theory of lattice-normed spaces. I. Continuous Banach bundles. Sib. Adv. Math. 3, 1–55 (1993) Gutman, A.E.: Banach bundles in the theory of lattice-normed spaces. II. Measurable Banach bundles. Sib. Adv. Math. 3, 8–40 (1993) Gutman, A.E., Koptev, A.V.: Dual Banach Bundles. Nonstandard Analysis and Vector Lattices, Mathematical Applications, vol. 525, pp. 105–159. Kluwer Academic Publishers, Dordrecht (2000) Haydon, R., Levy, M., Raynaud, Y.: Randomly Normed Spaces. Travaux en Cours [Works in Progress], vol. 41. Hermann, Paris (1991) Heinonen, J.: Lectures on Analysis on Metric Spaces. Universitext. Springer, New York (2001) Hoffmann-Jørgensen, J.: Existence of conditional probabilities. Math. Scand. 28, 257–264 (1971) Hytönen, T., Neerven, J., Veraar, M., Weis, L.: Analysis in Banach Spaces: Volume I: Martingales and Littlewood-Paley Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge/A Series of Modern Surveys in Mathematics, Springer (2016) Johnson, R.A.: Atomic and nonatomic measures. Proc. Am. Math. Soc. 25, 650–655 (1970) Johnson, R.A.: Strong liftings that are not Borel liftings. Proc. Am. Math. Soc. 80, 234–236 (1980) Kölzow, D.: Differentiation von Maßen. Lecture Notes in Mathematics. Springer, Berlin (1968) Lebesgue, H.: Sur l’intégration des fonctions discontinues. Ann. Sci. Éc. Norm. Supér. 3(27), 361–450 (1910) Loeb, P.A., Talvila, E.: Lusin’s theorem and Bochner integration. Sci. Math. Jpn. 10, 55–62 (2004) Losert, V.: A measure space without the strong lifting property. Math. Ann. 239, 119–128 (1979) Lučić, D., Pasqualetto, E.: The Serre–Swan theorem for normed modules. Rend. Circ. Mat. Palermo 2(68), 385–404 (2019) Lukeš, J., Malý, J., Zajíček, L.: Fine Topological Methods in Real Analysis and Potential Theory. Vol. 1189 of Lecture Notes in Mathematics. Springer, Berlin (1986) Maharam, D.: On a theorem of von Neumann. Proc. Am. Math. Soc. 9, 987–994 (1958) Mokobodzki, G.: Relévement borélien compatible avec une classe d’ensembles négligeables. Application á la désintégration des mesures. Séminaire de probabilités de Strasbourg 9, 437–442 (1975) Shelah, S.: Lifting problem of the measure algebra. Isr. J. Math. 45, 90–96 (1983) Strauss, W., Macheras, N.D., Musiał, K.: Liftings. Handbook of Measure Theory: In two volumes (edited by E. Pap), Volume II, Part 7. Elsevier Science, Amsterdam (2002) Traynor, T.: An elementary proof of the lifting theorem. Pac. J. Math. 53, 267–272 (1974) Tulcea, A.I., Tulcea, C.I.: On the existence of a lifting commuting with the left translations of an arbitrary locally compact group. In: Proceedings of the Fifth Berkeley Symposium of Mathematical Statistics and Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 1, pp. 63–97. University of California Press (1967) Tulcea, C.I.: On the lifting property and disintegration of measures. Bull. Am. Math. Soc. 71, 829–842 (1965) Tulcea, A.I., Tulcea, C.I.: On the lifting property (I). J. Math. Anal. Appl. 3, 537–546 (1961) Tulcea, A.I., Tulcea, C.I.: Liftings for abstract valued functions and separable stochastic processes. Probab. Theory Relat. Fields 13, 114–118 (1969) Tulcea, A.I., Tulcea, C.I.: Topics in the Theory of Lifting. Vol. 48 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin (1969) von Neumann, J.: Algebraische Repräsentanten der Funktionen “bis auf eine Menge von Maße Null’’. J. Reine Angew. Math. 165, 109–115 (1931) von Neumann, J., Stone, M.H.: The determination of representative elements in the residual classes of a Boolean algebra. Fundam. Math. 25, 353–378 (1935)