The method of successive orthogonal projections for solving nonlinear simultaneous equations

Calcolo - Tập 23 - Trang 93-104 - 1986
J. M. Martínez1
1Applied Mathematics Laboratory UNICAMP, Campinas, Brazil

Tóm tắt

In this paper we analyze a generalization of the method of Successive Orthogonal Projections (S.O.P.) for solving nonlinear simultaneous equations. We prove a local linear convergence theorem under mild assumptions on the Jacobian of the system. A globally convergent S.O.P. type method is also introduced. We comment some numerical experiences.

Tài liệu tham khảo

L. Armijo,Minimization of functions having Lipschitz-continuous first partial derivatives, Pacific J. Math., 16 (1966), 1–3. P. T. Boggs,On the use of Lyapunov theory for the analysis of nonlinear iterative methods, Proc. of 1975 Conference on Information Sciences and Systems, April 2–4, 1975. P. T. Boggs,The convergence of the Ben-Israel iteration for nonlinear least-squares problems, Math. Comp., 30 (1976), 512–522. C. G. Broyden, J. E. Dennis, J. J. Moré,On the local and superlinear convergence of Quasi-Newton methods, J. Inst. Math. Appl., 12 (1973), 223–245. Y. Censor,Row-action methods for huge and sparse systems and their applications, SIAM Rev., 23 (1981), 444–466. Y. Censor,Finite series-expansion reconstruction methods, IEEE Proceedings, 71 (1983), 409–419. Y. Censor, P. B. Eggermont, D. Gordon,Strong underrelaxation in Kaczmarz’s method for inconsistent systems, Numer. Math., 41 (1983), 83–92. R. Dembo, S. Eisenstat, T. Steihaug,Inexact Newton Methods, SIAM J. Numer. Anal., 19 (1982), 400–408. J. E. Dennis, E. S. Marwil,Direct secant updates of matrix factorizations, Math. Comp., 38 (1982), 459–476. A. De Pierro,Métodos de Projeção para sistemas lineares e quadrados mínimos, Tese de Doutorado, Instituto de Matemática, UFRJ, 1982. P. P. Eggermont, G. T. Herman, A. Lent,Iterative algorithms for large partitioned linear systems, with application to image reconstruction, Linear Algebra Appl., 40 (1981), 37–67. L. G. Gubin, B. T. Polyak, E. V. Paik,The method of projections for finding the common point of convex sets, U.S.S.R. Comput. Math. and Math. Phys., 7 (1967), 1–24. S. Kaczmarz,Angenaherte Auflösung von Systemen linearer Gleichungen, Bull. Acad. Polon. Sci. Lett. A, 35 (1937), 355–357. J. M. Martínez,Generalization of the methods of Brent and Brown for solving nonlinear simultaneous equations, SIAM J. Numer. Anal., 16 (1979), 434–448. J. M. Martínez,Solving nonlinear simultaneous equations with a generalization of Brent’s method, BIT, 20 (1980), 501–510. J. M. Martínez,A Quasi-Newton method with a new updating for the LDU factorization of the approximate Jacobian, Mat. Apl. Comput., 2 (1983), 131–142. J. M. Martínez,A Quasi-Newton method with modification of one column per iteration, Computing, 33 (1984), 353–362. S. F. McCormick,The methods of Kaczmarz and row orthogonalization for solving linear equations and least squares problems in Hilbert spaces, Indiana Univ. Math. J., 26 (1977), 1137–1150. S. F. McCormick,An iterative procedure for the solution of constrained nonlinear equations with application to optimization problems, Numer. Math., 23 (1975), 371–385. K. H. Meyn,Solution of underdetermined nonlinear equations by stationary methods, Numer. Math., 42 (1983), 161–172. J. J. Moré, B. S. Garbow, K. E. Hillstrom,Testing unconstrained minimization software, ACM Trans. Math. Software, 7 (1981), 17–41. B. E. Oppenheim,Reconstruction Tomography from incomplete projections, In: «Reconstruction Tomography in Diagnostic Radiology and Nuclear Medicine, M. M. Ter-Pogossian et al., Baltimore, MD: Univ. Park Press (1977) 155–183. J. M. Ortega, W. C. Rheinboldt,Iterative Solution of Nonlinear Equations in several variables, 1970, Academic Press, New York. L. K. Schubert,Modification of a Quasi-Newton method for nonlinear equations with a sparse Jacobian, Math. Comp., 24 (1970), 27–30. C. Tompkins,Projection methods in calculation, Proc. Sec. Symp. Lin. Progr., Washington D.C. (1955), 425–448. R. L. Wainwright,Acceleration techniques for a class of x-projection methods for solving systems of linear equations, Comput. Math. Appl., 5 (1979), 59–73. R. L. Wainwright,Three dimensional x-projection method (with acceleration techniques) for solving systems of linear equations, Comput. Math. Appl., 7 (1981), 211–223. R. L. Wainwright,Four dimensional x-projection method (with acceleration techniques) for solving systems of linear equations, Comput. Math. Appl., 8 (1982), 329–337. W. Zangwill,Nonlinear Programming: A unified approach, 1969, Prentice Hall, Englewood Cliffs, NJ.