The method of single-nucleotide variations detection using capillary electrophoresis and molecular beacons

Springer Science and Business Media LLC - Tập 36 - Trang 1903-1908 - 2008
Jinhui Wang1, Wei Wang2, Yanhong Liu1, Libo Duo1, Lijuan Huang1, Xiaofeng Jiang3
1Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
2Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
3Department of Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China

Tóm tắt

We demonstrate that single-nucleotide variations in a DNA sequence can be detected using capillary electrophoresis (CE) and molecular beacons (MBs). In this method, the region surrounding the site of a nucleotide variation was amplified in a polymerase chain reaction, then hybridize PCR products with each of MBs. The sequences of the PCR products are different at the site of 2,044 in exon of interleukin (IL)-13 which to be identified. Through denaturation, the PCR product became single strand and hybridized with the completely complementary MB. The MB-target duplexes were separated using CE and solution-based fluorescence techniques. The results show that in each reaction a fluorescent response was elicited from the molecular beacon which was perfectly complementary to the amplified DNA, but not from the other MB whose probe sequence mismatched the target sequence. The method of CE based on MBs is able to identify single-nucleotide variations in a DNA sequence and can discriminate the genotyping of the SNP between the homo- and heteroduplexes of DNA fragments.

Tài liệu tham khảo

Sweasy JB, Lauper JM, Eckert KA (2006) DNA polymerases and human diseases. Radiat Res 166:693–714. doi:10.1667/RR0706.1 Daniels G (2005) The molecular genetics of blood group polymorphism. Transpl Immunol 14:143–153. doi:10.1016/j.trim.2005.03.003 Fang X, Mi Y, Li JJ, Beck T, Schuster S, Tan W (2002) Molecular beacons: fluorogenic probes for living cell study. Cell Biochem Biophys 37:71–81. doi:10.1385/CBB:37:2:071 Shi MM (2001) Enabling large-scale pharmacogenetic studies by high-throughput mutation detection and genotyping technologies. Clin Chem 47:164–172 Tan W, Wang K, Drake TJ (2004) Molecular beacons. Curr Opin Chem Biol 8:547–553. doi:10.1016/j.cbpa.2004.08.010 Graves PE, Kabesch M, Halonen M, Holberg CJ, Baldini M, Fritzsch C et al (2000) A cluster of seven tightly linked polymorphisms in the IL-13 gene is associated with total serum IgE levels in three populations of white children. J Allergy Clin Immunol 105:506–513. doi:10.1067/mai.2000.104940 Pantelidis P, Jones MG, Welsh KI, Taylor AN, du Bois RM (2000) Identification of four novel interleukin-13 gene polymorphisms. Genes Immun 1:341–345. doi:10.1038/sj.gene.6363679 Heinzmann A, Mao XQ, Akaiwa M, Kreomer RT, Gao PS, Ohshima K et al (2000) Genetic variants of IL-13 signalling and human asthma and atopy. Hum Mol Genet 9:549–559. doi:10.1093/hmg/9.4.549 Howard TD, Whittaker PA, Zaiman AL, Koppelman GH, Xu J, Hanley MT et al (2001) Identification and association of polymorphisms in the interleukin-13 gene with asthma and atopy in a Dutch population. Am J Respir Cell Mol Biol 25:377–384 Wang M, Xing ZM, Lu C, Ma YX, Yu DL, Yan Z et al (2003) A common IL-13 Arg130Gln single nucleotide polymorphism among Chinese atopy patients with allergic rhinitis. Hum Genet 113:387–390. doi:10.1007/s00439-003-1001-x Wills-Karp M (2004) Interleukin-13 in asthma pathogenesis. Curr Allergy Asthma Rep 4:123–131. doi:10.1007/s11882-004-0057-6 Churruca E, Girbau C, Martínez I, Mateo E, Alonso R, Fernández-Astorga A (2007) Detection of Campylobacter jejuni and Campylobacter coli in chicken meat samples by real-time nucleic acid sequence-based amplification with molecular beacons. Int J Food Microbiol 117:85–90. doi:10.1016/j.ijfoodmicro.2007.02.007 Zhao C, Xu G, Shi X, Ma J, Zhang Y, Lv S et al (2004) Fluorescent-based single-strand conformation polymorphism/heteroduplex capillary electrophoretic mutation analysis of the P53 gene. Anal Sci 20:1001–1005. doi:10.2116/analsci.20.1001 Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308. doi:10.1038/nbt0396-303 Nilsson M, Gullberg M, Dahl F, Szuhai K, Raap AK (2002) Real-time monitoring of rolling-circle amplification using a modified molecular beacon design. Nucleic Acids Res 30:e66. doi:10.1093/nar/gnf065 Du M, Flanagan JH Jr, Ma Y (2007) Separation of homo- and heteroduplexes of DNA fragments with different melting temperature by capillary electrophoresis at one single temperature. J Capill Electrophor Microchip Technol 10:33–39 Du W, Chen S, Xu Y, Chen Z, Luo Q, Liu BF (2007) Multiphoton excitation fluorescence: a versatile detection method for capillary electrophoresis. J Sep Sci 30:906–915. doi:10.1002/jssc.200600477 Ramachandran A, Zhang M, Goad D, Olah G, Malayer JR, El-Rassi Z (2003) Capillary electrophoresis and fluorescence studies on molecular beacon-based variable length oligonucleotide target discrimination. Electrophoresis 24:70–77. doi:10.1002/elps.200390033 Hopkins JF, Woodson SA (2005) Molecular beacons as probes of RNA unfolding under native conditions. Nucleic Acids Res 33:5763–5770. doi:10.1093/nar/gki877 Aalberts DP, Parman JM, Goddard NL (2003) Single-strand stacking free energy from DNA beacon kinetics. Biophys J 84:3212–3217 Dinelli G, Bonetti A, Marotti I, Minelli M, Navarrete-Casas M, Segura-Carretero A et al (2006) Quantitative-competitive polymerase chain reaction coupled with slab gel and capillary electrophoresis for the detection of roundup ready soybean and maize. Electrophoresis 27:4029–4038. doi:10.1002/elps.200500397 Funes-Huacca M, Regitano LC, Mueller O, Carrilho E (2004) Semiquantitative determination of Alicyclobacillus acidoterrestris in orange juice by reverse-transcriptase polymerase chain reaction and capillary electrophoresis–laser induced fluorescence using microchip technology. Electrophoresis 25:3860–3864. doi:10.1002/elps.200406105 Ptolemy AS, Britz-McKibbin P (2006) Sample preconcentration with chemical derivatization in capillary electrophoresis. Capillary as preconcentrator, microreactor and chiral selector for high-throughput metabolite screening. J Chromatogr A 1106:7–18. doi:10.1016/j.chroma.2005.11.012 Hung CC, Chien SC, Lin CY, Chang CH, Chang YF, Jong YJ et al (2007) Use of multiplex PCR and CE for gene dosage quantification and its biomedical applications for SMN, PMP22, and alpha-globin genes. Electrophoresis 28:2826–2834. doi:10.1002/elps.200600647 Gavrilov DN, Kosobokova O, Khozikov V, Stepukhovitch A, Gorfinkel V (2005) Electrophoresis in capillary cells with detection gap. Electrophoresis 26:3430–3437. doi:10.1002/elps.200500237