The method of simplified Tikhonov regularization for a time-fractional inverse diffusion problem

Mathematics and Computers in Simulation - Tập 144 - Trang 219-234 - 2018
Fan Yang1,2, Chu-Li Fu2, Xiao-Xiao Li1
1School of Science, Lanzhou University of Technology, Lanzhou, Gansu, 730050, People’s Republic of China
2School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China

Tài liệu tham khảo

Barkai, 2000, From continuous time random walks to the fractional Fokker-Planck equation, Phys. Rev. E, 61, 132, 10.1103/PhysRevE.61.132 Blumen, 1989, Transport aspects in anomalous diffusion, Levy Walks, 40, 3964 Carasso, 1982, Determining surface temperature from interior observations, SIAM J. Appl. Math., 42, 558, 10.1137/0142040 Chaves, 1998, A fractional diffusion equation to descrive levy flights, Phys. Lett. A, 239, 13, 10.1016/S0375-9601(97)00947-X Cheng, 2007, A modified Tikhonov regularization method for a spherically symmetric three-dimensional inverse heat conduction problem, Math. Comput. Simulation, 75, 97, 10.1016/j.matcom.2006.09.005 Cheng, 2009, Uniqueness in an inverse problem for one-dimensional fractional diffusion equation, Inverse Problems, 16, 115002, 10.1088/0266-5611/25/11/115002 Engl, 1996 Feng, 2011, A regularization method for solving the Cauchy problem for the Helmholtz equation, Appl. Math. Model., 35, 3301, 10.1016/j.apm.2011.01.021 Fu, 2004, Simplified Tikhonov and Fourier regularization methods on a general sideways parabolic equation, J. Comput. Appl. Math., 167, 449, 10.1016/j.cam.2003.10.011 Kirsch, 1996 Liu, 2010, A backward problem for the time-fractional diffusion equation, Appl. Anal., 89, 1769, 10.1080/00036810903479731 Metzler, 2000, Boundary value problems for fractional diffusion equations, Physica A, 278, 107, 10.1016/S0378-4371(99)00503-8 Murio, 2007, Stable numerical solution of a fractional-diffusion inverse heat conduction problem, Comput. Math. Appl., 53, 1492, 10.1016/j.camwa.2006.05.027 Murio, 2008, Time fractional IHCP with Caputo fractional derivatives, Comput. Math. Appl., 56, 2371, 10.1016/j.camwa.2008.05.015 Podlubny, 1999 Qian, 2010, Optimal modified method for a fractional-diffusion inverse heat conduction problem, Inverse Probl. Sci. Eng., 18, 521, 10.1080/17415971003624348 Raberto, 2002, Waiting-times and returns in high-frequency financial data: an empirical study, Physica A, 314, 749, 10.1016/S0378-4371(02)01048-8 Wang, 2013, Two regularization methods to identify a space-dependent source for the time-fractional diffusion equation, Appl. Numer. Math., 68, 39, 10.1016/j.apnum.2013.01.001 Xiong, 2012, An inverse problem for a fractional diffusion equation, J. Comput. Appl. Math., 236, 4474, 10.1016/j.cam.2012.04.019 Yang, 2010, A simplified Tikhonov regularization method for determining the heat source, Appl. Math. Model., 34, 3286, 10.1016/j.apm.2010.02.020 Yang, 2015, The quasi-reversibility regularization method for identifying the unknown source for time fractional diffusion equation, Appl. Math. Model., 39, 1500, 10.1016/j.apm.2014.08.010 Yang, 2014, A mollification regularization method for unknown source in time-fractional diffusion equation, Int. J. Comput. Math., 91, 516, 10.1080/00207160.2013.851787 Zhang, 2013, An optimal regularization method for space-fractional backward diffusion problem, Math. Comput. Simulation, 92, 14, 10.1016/j.matcom.2013.04.008 Zhang, 2013, Identifying an unknown source in time-fractional diffusion equation by a truncation method, Appl. Math. Comput., 219, 5972 Zheng, 2010, Spectral regularization method for the time fractional inverse advection–dispersion equation, Math. Comput. Simulation, 81, 37, 10.1016/j.matcom.2010.06.017 Zheng, 2010, Two regularization methods for solving a Riesz-Feller space-fractional backward diffusion problem, Inverse Problems, 26, 115017, 10.1088/0266-5611/26/11/115017 Zheng, 2011, A new regularization method for solving a time-fractional inverse diffusion problem, J. Math. Anal. Appl., 378, 418, 10.1016/j.jmaa.2011.01.067 Zheng, 2012, A new regularization method for a Cauchy problem of the time fractional diffusion equation, Adv. Comput. Math., 36, 377, 10.1007/s10444-011-9206-3