The meniscotibial ligament role in meniscal extrusion: a systematic review and meta-analysis
Tóm tắt
The meniscotibial ligament (MTL) limits extrusion of the medial meniscus (MM). While meniscal extrusion may be detrimental to knee joint biomechanics, the role of the MTL in meniscal extrusion is debatable. We sought to perform a systematic review and meta-analysis to evaluate the role of the MTL and surgical techniques for MTL repair. Following Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines we searched PubMed, Cochrane Library, and Embase for: ((“Meniscotibial”) OR (“Coronary”) OR (“Ramp”)) AND (“Extrusion”). After screening and applying eligibility criteria, data were extracted for MTL pathology types (“traumatic” ruptures or “induced” injuries) and meniscal extrusion. A meta-analysis evaluated the mean difference of extrusion between “intact” MTLs (native or repaired) and “injured” MTLs (induced or traumatic). We further performed a subgroup analysis between traumatic and induced MTL lesions. This systematic review included six studies, which all evaluated MM extrusion. There were 74 knees with induced MTL injuries and 19 knees with traumatic MTL ruptures. Study designs were heterogenic and utilized three types of MTL repair procedures. The meta-analysis included 18 human knees and revealed that sectioning the MTL created a 2.92 mm [− 0.18 to 6.03] MM extrusion, while MTL repair decreased MM extrusion by − 2.11 mm [− 3.03 to − 1.21]. MTL injury may result in approximately 3 mm of MM extrusion, while repair of the MTL can decrease extrusion by 2 mm. Several novel surgical techniques exist to repair the MTL. However, studies reporting clinical outcomes of these various procedures are scarce.
Tài liệu tham khảo
Chahla J, Beletsky A, Smigielski R, Brown CH (2022) Meniscal pathology: meniscus anatomy. Evid Based Manag Complex Knee Injuries. https://doi.org/10.1016/B978-0-323-71310-8.00013-X
Cavaignac E, Sylvie R, Teulières M et al (2021) What is the relationship between the distal semimembranosus tendon and the medial meniscus? A gross and microscopic analysis from the SANTI Study Group. Am J Sports Med 49:459–466. https://doi.org/10.1177/0363546520980076
DePhillipo NN, Moatshe G, Chahla J et al (2019) Quantitative and qualitative assessment of the posterior medial meniscus anatomy: defining meniscal ramp lesions. Am J Sports Med 47:372–378. https://doi.org/10.1177/0363546518814258
Gajjar SM, Solanki KP, Shanmugasundaram S, Kambhampati SBS (2021) Meniscal extrusion: a narrative review. Orthop J Sports Med. https://doi.org/10.1177/23259671211043797
Hamberg P, Gillquist J, Lysholm J (1983) Suture of new and old peripheral meniscus tears. J Bone Jt Surg Ser A 65:193–197. https://doi.org/10.2106/00004623-198365020-00007
Thaunat M, Ingale P, Penet A et al (2021) Ramp lesion subtypes: prevalence, imaging, and arthroscopic findings in 2156 anterior cruciate ligament reconstructions. Am J Sports Med 49:1813–1821. https://doi.org/10.1177/03635465211006103
DePhillipo NN, Moatshe G, Brady A et al (2018) Effect of meniscocapsular and meniscotibial lesions in ACL-deficient and ACL-reconstructed knees: a biomechanical study. Am J Sports Med 46:2422–2431. https://doi.org/10.1177/0363546518774315
Stephen JM, Halewood C, Kittl C et al (2016) Posteromedial meniscocapsular lesions increase tibiofemoral joint laxity with anterior cruciate ligament deficiency, and their repair reduces laxity. Am J Sports Med 44:400–408. https://doi.org/10.1177/0363546515617454
Ahn JH, Bae TS, Kang K-S et al (2011) Longitudinal tear of the medial meniscus posterior horn in the anterior cruciate ligament-deficient knee significantly influences anterior stability. Am J Sports Med 39:2187–2193. https://doi.org/10.1177/0363546511416597
Aagaard H, Verdonk R (1999) Function of the normal meniscus and consequences of meniscal resection. Scand J Med Sci Sports 9:134–140
Hunter D (2012) Degeneration of the meniscus and progression of osteoarthritis. HSS J 8:13–14. https://doi.org/10.1007/s11420-011-9243-y
Menetrey J, Jones DG, Ernlund LS, Fu FH (1999) Posterior peripheral sutures in meniscal allograft replacement. Arthroscopy 15:663–668. https://doi.org/10.1053/ar.1999.v15.0150661
Levy IM, Torzilli PA, Warren RF (1982) The effect of medial meniscectomy on anterior-posterior motion of the knee. J Bone Jt Surg Ser A 64:883–888. https://doi.org/10.2106/00004623-198264060-00011
Samitier G, Alentorn-Geli E, Taylor DC et al (2015) Meniscal allograft transplantation. Part 1: systematic review of graft biology, graft shrinkage, graft extrusion, graft sizing, and graft fixation. Knee Surg Sports Traumatol Arthrosc 23:310–322. https://doi.org/10.1007/s00167-014-3334-5
Bloecker K, Wirth W, Guermazi A et al (2015) Relationship between medial meniscal extrusion and cartilage loss in specific femorotibial subregions: Data from the osteoarthritis initiative. Arthritis Care Res 67:1545–1552. https://doi.org/10.1002/acr.22615
Daney BT, Aman ZS, Krob JJ et al (2019) Utilization of transtibial centralization suture best minimizes extrusion and restores tibiofemoral contact mechanics for anatomic medial meniscal root repairs in a cadaveric model. Am J Sports Med 47:1591–1600. https://doi.org/10.1177/0363546519844250
Harper KW, Helms CA, Lambert HS, Higgins LD (2005) Radial meniscal tears: significance, incidence, and MR appearance. AJR Am J Roentgenol 185:1429–1434. https://doi.org/10.2214/AJR.04.1024
Ozeki N, Muneta T, Kawabata K et al (2017) Centralization of extruded medial meniscus delays cartilage degeneration in rats. J Orthop Sci 22:542–548. https://doi.org/10.1016/j.jos.2017.01.024
Lee DH (2018) Incidence and extent of graft extrusion following meniscus allograft transplantation. BioMed Res Int. https://doi.org/10.1155/2018/5251910
Veltri DM, Warren RF, Wickiewicz TL, O’Brien SJ (1994) Current status of allograft meniscal transplantation. Clin Orthop Relat Res 303:44–55
de Boer HH, Koudstaal J (1994) Failed meniscus transplantation. A report of three cases. Clin Orthop Relat Res 306:155–162
Noyes FR, Barber-Westin SD (2015) A systematic review of the incidence and clinical significance of postoperative meniscus transplant extrusion. Knee Surg Sports Traumatol Arthrosc 23:290–302. https://doi.org/10.1007/s00167-014-3329-2
Bin Il S, Kim HJ, Lee DH (2018) Graft extrusion after medial and lateral MAT differs according to surgical technique: a meta-analysis. Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-018-2922-0
Ozeki N, Seil R, Krych AJ, Koga H (2021) Surgical treatment of complex meniscus tear and disease: state of the art. J ISAKOS 6:35–45. https://doi.org/10.1136/jisakos-2019-000380
Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6:e1000100. https://doi.org/10.1371/JOURNAL.PMED.1000100
NIH (2014) Study quality assessment tools NHLBI, NIH. National Heart, Lung, and Blood Institute
Wilke J, Krause F, Niederer D et al (2015) Appraising the methodological quality of cadaveric studies: validation of the QUACS scale. J Anat 226:440. https://doi.org/10.1111/JOA.12292
Higgins JPT, Thomas J, Chandler J et al (2019) Cochrane handbook for systematic reviews of interventions. Wiley
Debieux P, Jimenez AE, Novaretti JV et al (2021) Medial meniscal extrusion greater than 4 mm reduces medial tibiofemoral compartment contact area: a biomechanical analysis of tibiofemoral contact area and pressures with varying amounts of meniscal extrusion. Knee Surg Sports Traumatol Arthrosc 29:3124–3132. https://doi.org/10.1007/s00167-020-06363-0
Paletta GA, Crane DM, Konicek J et al (2020) Surgical treatment of meniscal extrusion: a biomechanical study on the role of the medial meniscotibial ligaments with early clinical validation. Orthop J Sports Med 8:2325967120936672. https://doi.org/10.1177/2325967120936672
Seil R, Dück K, Pape D (2011) A clinical sign to detect root avulsions of the posterior horn of the medial meniscus. Knee Surg Sports Traumatol Arthrosc 19:2072–2075. https://doi.org/10.1007/s00167-011-1550-9
Mariani PP, Torre G, Battaglia MJ (2022) The post-traumatic meniscal extrusion, sign of meniscotibial ligament injury. A case series. Orthop Traumatol 108:103226. https://doi.org/10.1016/j.otsr.2022.103226
Ozeki N, Matsuda J, Muneta T et al (2016) Biomechanical analysis of centralization with an anchor for meniscus extrusion in a porcine model. In: Orthopaedic Research Society Annual Meeting, p 1483
Haddaway NR, Page MJ, Pritchard CC, McGuinness LA (2022) PRISMA2020: an R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and open synthesis. Campbell Syst Rev. https://doi.org/10.1002/cl2.1230
Koga H, Nakamura T, Nakagawa Y et al (2021) Arthroscopic centralization using knotless anchors for extruded medial meniscus. Arthrosc Tech 10:e639–e645. https://doi.org/10.1016/j.eats.2020.10.051
Koga H, Nakamura T, Katagiri H et al (2020) Two-year outcomes after meniscoplasty by capsular advancement with the application of arthroscopic centralization technique for lateral compartment knee osteoarthritis. Am J Sports Med 48:3154–3162. https://doi.org/10.1177/0363546520957367
Kohno Y, Koga H, Ozeki N et al (2022) Biomechanical analysis of a centralization procedure for extruded lateral meniscus after meniscectomy in porcine knee joints. J Orthop Res 40:1097–1103. https://doi.org/10.1002/jor.25146
Black AK, Schlepp C, Zapf M, Reid JB (2018) Technique for arthroscopically assisted superficial and deep medial collateral ligament-meniscotibial ligament repair with internal brace augmentation. Arthrosc Tech 7:e1215–e1219. https://doi.org/10.1016/j.eats.2018.08.006
Webb SA, Brassett C, Chitnavis J (2017) MRI and clinical patterns in adult humans with symptomatic meniscal tears necessitating knee surgery. J Anat 231: 445-468
Krych AJ, LaPrade MD, Hevesi M et al (2020) Investigating the chronology of meniscus root tears: do medial meniscus posterior root tears cause extrusion or the other way around? Orthop J Sports Med 8:232596712096136. https://doi.org/10.1177/2325967120961368
Costa CR, Morrison WB, Carrino JA (2004) Medial meniscus extrusion on knee MRI: is extent associated with severity of degeneration or type of tear? Am J Roentgenol 183:17–23. https://doi.org/10.2214/ajr.183.1.1830017
Svensson F, Felson DT, Turkiewicz A et al (2019) Scrutinizing the cut-off for “pathological” meniscal body extrusion on knee MRI. Eur Radiol 29:2616–2623. https://doi.org/10.1007/s00330-018-5914-0
Krych AJ, Bernard CD, Leland DP et al (2020) Isolated meniscus extrusion associated with meniscotibial ligament abnormality. Knee Surg Sports Traumatol Arthrosc 28:3599–3605. https://doi.org/10.1007/s00167-019-05612-1
Krych AJ, Nauert RF, Song BM et al (2021) Association between transtibial meniscus root repair and rate of meniscal healing and extrusion on postoperative magnetic resonance imaging: a prospective multicenter study. Orthop J Sports Med 9:232596712110237. https://doi.org/10.1177/23259671211023774
Chernchujit B, Prasetia R (2018) Arthroscopic direct meniscal extrusion reduction: surgical tips to reduce persistent meniscal extrusion in meniscal root repair. Eur J Orthop Surg Traumatol 28:727–734. https://doi.org/10.1007/s00590-018-2138-6
Zhang Y, Hou S, Li L et al (2018) Arthroscopic techniques and instruments for meniscal allograft transplantation using the bone bridge in trough method. Exp Ther Med. https://doi.org/10.3892/etm.2018.7090
Schreiner AJ, Stannard JP, Cook CR et al (2021) Comparison of meniscal allograft transplantation techniques using a preclinical canine model. J Orthop Res 39:154–164. https://doi.org/10.1002/jor.24668
Condron NB, Knapik DM, Gilat R et al (2022) Concomitant meniscotibial ligament reconstruction decreases meniscal extrusion following medial meniscus allograft transplantation: a cadaveric analysis. Arthroscopy. https://doi.org/10.1016/J.ARTHRO.2022.06.015
Srimongkolpitak S, Chernchujit B (2022) Current concepts on meniscal repairs. J Clin Orthopaed Trauma 27:101810. https://doi.org/10.1016/j.jcot.2022.101810
Liu X, Feng H, Zhang H et al (2011) Arthroscopic prevalence of ramp lesion in 868 patients with anterior cruciate ligament injury. Am J Sports Med 39:832–837. https://doi.org/10.1177/0363546510388933
Hughston JC (1993) Knee ligaments: injury and repair. Mosby Incorporated
Sonnery-Cottet B, Conteduca J, Thaunat M et al (2014) Hidden lesions of the posterior horn of the medial meniscus: a systematic arthroscopic exploration of the concealed portion of the knee. Am J Sports Med 42:921–926. https://doi.org/10.1177/0363546514522394
Zoga AC, Rutigliano S, Roedl J, Morrison WB (2017) Abstracts 2017 society of skeletal radiology annual scientific meeting. Skelet Radiol 46:415–441. https://doi.org/10.1007/s00256-016-2547-8
Bassett AJ, Hadley CJ, Tjoumakaris F, Freedman KB (2019) The meniscal grammar signs: comma and apostrophe signs for characterization of a displaced fragment in the meniscal recess. Arthrosc Tech 8:e727–e732. https://doi.org/10.1016/j.eats.2019.03.008
Salem HS, Carter AH, Shi WJ et al (2018) The meniscal comma sign: characterization and treatment of a displaced fragment in the meniscotibial recess. Orthopedics. https://doi.org/10.3928/01477447-20180501-01
Lougher L, Southgate CRW, Holt MD (2003) Coronary ligament rupture as a cause of medial knee pain. Arthroscopy 19:e157–e158. https://doi.org/10.1016/j.arthro.2003.10.027
El-Khoury GY, Usta HY, Berger RA (1984) Meniscotibial (coronary) ligament tears. Skelet Radiol 11:191–196. https://doi.org/10.1007/BF00349493
Bollier M, Smith PA (2014) Anterior cruciate ligament and medial collateral ligament injuries. J Knee Surg 27:359–368. https://doi.org/10.1055/S-0034-1381961