The mechanisms governing the activation of dislocation sources in aluminum at different strain rates

Journal of the Mechanics and Physics of Solids - Tập 84 - Trang 273-292 - 2015
B. Gurrutxaga-Lerma1, D.S. Balint1, D. Dini1, A.P. Sutton2
1Department of Mechanical Engineering, Imperial College London, SW7 2AZ London, UK
2Department of Physics, Imperial College London, SW7 2AZ London, UK

Tài liệu tham khảo

Agnihotri, P.K., Van der Giessen, E., 2015. On the rate sensitivity in discrete dislocation plasticity. Mech. Mater. http://dx.doi.org/10.1016/j.mechmat.2015.01.009, in press. Argon, 2008 Armstrong, 2015, Dislocation mechanics of high-rate deformations, Metall. Mater. Trans. A, 1 Armstrong, 2008, High strain rate properties of metals and alloys, Int. Mater. Rev., 53, 105, 10.1179/174328008X277795 Armstrong, 2007, Dislocation mechanics of shock-induced plasticity, Metall. Mater. Trans. A, 38, 2605, 10.1007/s11661-007-9142-5 Arsenlis, 2007, Enabling strain hardening simulations with dislocation dynamics, Modell. Simul. Mater. Sci. Eng., 15, 553, 10.1088/0965-0393/15/6/001 Aubry, 2011, Energy barrier for homogeneous dislocation nucleation: comparing atomistic and continuum models, Scr. Mater., 64, 1043, 10.1016/j.scriptamat.2011.02.023 Austin, 2011, A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates, Int. J. Plast., 27, 1, 10.1016/j.ijplas.2010.03.002 Austin, 2012, Parameterization of a rate-dependent model of shock-induced plasticity for copper, nickel, and aluminum, Int. J. Plast., 32, 134, 10.1016/j.ijplas.2011.11.002 Balint, 2006, Size effects in uniaxial deformation of single and polycrystals, Modell. Simul. Mater. Sci. Eng., 14, 409, 10.1088/0965-0393/14/3/005 Benzerga, 2008, An analysis of echaustion hardening in micron-scale plasticity, Int. J. Plast., 24, 1128, 10.1016/j.ijplas.2007.08.010 Benzerga, 2004, Incorporating three-dimensional mechanisms into two-dimensional dislocation dynamics, Modell. Simul. Mater. Sci. Eng., 12, 159, 10.1088/0965-0393/12/1/014 Bitzek, 2004, Atomistic study of drag, surface and inertial effects on edge dislocations in face-centered cubic metals, Mater. Sci. Eng. A, 387–389, 11, 10.1016/j.msea.2004.01.092 Bitzek, 2005, Dynamic aspects of dislocation motion, Mater. Sci. Eng. A, 400–401, 40, 10.1016/j.msea.2005.03.047 Bringa, 2005, Ultrahigh strength in nanocrystalline materials under shock loading, Science, 309, 1838, 10.1126/science.1116723 Bringa, 2006, Shock deformation of face-centred-cubic metals on subnanosecond timescales, Nat. Mater., 5, 805, 10.1038/nmat1735 Brock, 1982, Dynamic solutions for the non-uniform motion of an edge dislocation, Int. J. Eng. Sci., 20, 113, 10.1016/0020-7225(82)90077-5 Brown, 1964, The self-stress of dislocations and the shape of extended nodes, Philos. Mag., 10, 441, 10.1080/14786436408224223 Bulatov, 2006 Cai, 2006, A non-singular continuum theory of dislocations, J. Mech. Phys. Solids, 54, 561, 10.1016/j.jmps.2005.09.005 Clifton, 1981, Elastic precursor decay and radiation from nonuniformly moving dislocations, J. Mech. Phys. Solids, 29, 227, 10.1016/0022-5096(81)90028-4 Crowhurst, 2011, Invariance of the dissipative action at ultrahigh strain rates above the strong shock threshold, Phys. Rev. B, 107, 144302 Davis, 1966, Nucleation rate of vacancy clusters in crystals, J. Appl. Phys., 37, 2112, 10.1063/1.1708745 Fan, 2012, Onset mechanism of strain-rate-induced flow stress upturn, Phys. Rev. Lett., 109, 135503, 10.1103/PhysRevLett.109.135503 Follansbee, P.S., Regazzoni, G., Kocks, U.F., 1984. The transition to drag controlled deformation in copper at high strain rates. In: Harding, J. (Ed.), Proceedings of the Third International Conference on Mechanical Properties of Materials at High Strain Rates, vol. 3 of 70. Institute of Physics, London, pp. 71–80. Foreman, 1967, The bowing of a dislocation segment, Philos. Mag., 15, 1011, 10.1080/14786436708221645 Friedli, 1975, Aluminum under high pressure. I. Equation of state, Phys. Rev. B, 12, 5552, 10.1103/PhysRevB.12.5552 Gilman, 1969 Grady, 2010, Structured shock waves and the fourth-power law, J. Appl. Phys., 107, 013506, 10.1063/1.3269720 Gurrutxaga-Lerma, 2015, The role of homogeneous nucleation in planar dynamic discrete dislocation plasticity, J.Appl.Mech, 82, 071008, 10.1115/1.4030320 Gurrutxaga-Lerma, 2013, A dynamic discrete dislocation plasticity method for the simulation of plastic relaxation under shock loading, Proc. R. Soc. A, 469, 20130141, 10.1098/rspa.2013.0141 Gurrutxaga-Lerma, B., Balint, D.S., Dini, D., Eakins, D.E., Sutton, A.P., 2014. Dynamic discrete dislocation plasticity. Advances in Applied Mechanics, vol. 47. London, Elsevier (Chapter 2). Gurrutxaga-Lerma, 2015, Attenuation of the dynamic yield point of shocked aluminum using elastodynamic simulations of dislocation dynamics, Phys. Rev. Lett., 114, 174301, 10.1103/PhysRevLett.114.174301 Gutkin, 2006, Special mechanism for dislocation nucleation in nanomaterials, Appl. Phys. Lett., 88, 211901, 10.1063/1.2206095 Gutkin, 2008, Homogeneous nucleation of dislocation loops in nanocrystalline metals and ceramics, Acta Mater., 56, 1642, 10.1016/j.actamat.2007.12.004 Hirth, 1982 Hirth, 1998, Forces on high velocity dislocations, Modell. Simul. Mater. Sci. Eng., 6, 165, 10.1088/0965-0393/6/2/006 Huang, 1989, Microband formation in shock-loaded and quasi-statically deformed metals, Acta Metall., 37, 3335, 10.1016/0001-6160(89)90206-X Hull, 2011 Iserles, 2009, vol. 44 Johnston, 1959, Dislocation velocities, dislocation densities, and plastic flow in lithium fluoride crystals, J. Appl. Phys., 30, 129, 10.1063/1.1735121 Klopp, 1985, Pressure-shear impact and the dynamic viscoplastic response of metals, Mech. Mater., 4, 375, 10.1016/0167-6636(85)90033-X Koizumi, 2002, Lattice wave emission from a moving dislocation, Phys. Rev. B, 65, 214104, 10.1103/PhysRevB.65.214104 Lloyd, 2014, Simulation of shock wave propagation in single crystal and polycrystalline aluminum, Int. J. Plast., 60, 118, 10.1016/j.ijplas.2014.04.012 Malygin, 2013, On the power-law pressure dependence of the plastic strain rate of crystals under intense shock wave loading, Phys. Solid State, 55, 780, 10.1134/S1063783413040197 Markenscoff, 1980, The transient motion of a nonuniformly moving dislocation, J. Elast., 10, 193, 10.1007/BF00044503 Markenscoff, 1981, The nonuniformly moving edge dislocation, J. Mech. Phys. Solids, 29, 253, 10.1016/0022-5096(81)90029-6 Meyers, 1978, A mechanism for dislocation generation in shock-wave deformation, Scr. Metall., 12, 21, 10.1016/0036-9748(78)90219-3 Meyers, 1994 Meyers, 2003, Laser-induced shock compression of monocrystalline copper: characterization and analysis, Acta Mater., 51, 1211, 10.1016/S1359-6454(02)00420-2 Meyers, 2009, Dislocations in shock compression and release, vol. 15, 94 Murr, 1988, 315 Murr, 1978, Experimental and theoretical observations on the relationship between dislocation cell size, dislocation density, residual hardness, peak pressure and pulse duration in shock-loaded nickel, Acta Metall., 26, 847, 10.1016/0001-6160(78)90034-2 Ni, 2008, The self-force and effective mass of a generally accelerating dislocation I, J. Mech. Phys. Solids, 56, 1348, 10.1016/j.jmps.2007.09.002 Nix, 1971, Physics of strengthening mechanics in crystalline solids, Annu. Rev. Mater. Sci., 1, 313, 10.1146/annurev.ms.01.080171.001525 Olmsted, 2005, Atomistic simulations of dislocation mobility in Al, Ni and Al/Mg alloys, Modell. Simul. Mater. Sci. Eng., 13, 371, 10.1088/0965-0393/13/3/007 Pellegrini, 2014, Equation of motion and subsonic-transonic transitions of rectilinear edge dislocations, Phys. Rev. B, 90, 054120, 10.1103/PhysRevB.90.054120 Pillon, 2007, Equation of motion for dislocations with inertial effects, Phys. Rev. B, 76, 224105, 10.1103/PhysRevB.76.224105 Price, 1963, 41 Reed-Hill, 2009 Regazzoni, 1987, Dislocation kinetics at high strain rates, Acta Metall., 35, 2865, 10.1016/0001-6160(87)90285-9 Shishvan, 2010, Distribution of dislocation source length and the size dependent yield strength in freestanding thin films, J. Mech. Phys. Solids, 58, 678, 10.1016/j.jmps.2010.02.011 Shishvan, 2008, A dislocation-dynamics-based derivation of the Frank–Read source characteristics for discrete dislocation plasticity, Modell. Simul. Mater. Sci. Eng., 16, 075002, 10.1088/0965-0393/16/7/075002 Swegle, 1985, Shock viscosity and the prediction of shock wave rise times, J. Appl. Phys., 58, 692, 10.1063/1.336184 Taylor, 1969 Tschopp, 2008, Influence of single crystal orientation on homogeneous dislocation nucleation under uniaxial loading, J. Mech. Phys. Solids, 56, 1806, 10.1016/j.jmps.2007.11.012 Tsuzuki, 2008, Accelerating dislocations to transonic and supersonic speeds in anisotropic metals, Appl. Phys. Lett., 92, 191909, 10.1063/1.2921786 Van der Giessen, 1995, Discrete dislocation plasticity, Modell. Simul. Mater. Sci. Eng., 3, 689, 10.1088/0965-0393/3/5/008 Wang, 2007, The importance of cross-slip in high-rate deformation, Modell. Simul. Mater. Sci. Eng., 15, 675, 10.1088/0965-0393/15/6/006 Weertman, J., 1961. High velocity dislocations. In: Shewmon, P.G., Zackay, V.F. (Eds.), Response of Metals to High Velocity Deformation. Metallurgical Society Conferences, vol. 9. Metallurgical Society of AIME. Interscience, New York, pp. 205–249. Weertman, 1986, Plastic deformation behind strong shock waves, Mech. Mater., 5, 13, 10.1016/0167-6636(86)90012-8 Weertman, 1988, Dislocation dynamics and plastic shock waves, Mech. Mater., 7, 177, 10.1016/0167-6636(88)90017-8 Weertman, 1980, Moving dislocations, vol. 3, 3 Zaretsky, 1995, Dislocation multiplication behind the shock front, J. Appl. Phys., 78, 3740, 10.1063/1.359954