The mechanisms governing the activation of dislocation sources in aluminum at different strain rates
Tài liệu tham khảo
Agnihotri, P.K., Van der Giessen, E., 2015. On the rate sensitivity in discrete dislocation plasticity. Mech. Mater. http://dx.doi.org/10.1016/j.mechmat.2015.01.009, in press.
Argon, 2008
Armstrong, 2015, Dislocation mechanics of high-rate deformations, Metall. Mater. Trans. A, 1
Armstrong, 2008, High strain rate properties of metals and alloys, Int. Mater. Rev., 53, 105, 10.1179/174328008X277795
Armstrong, 2007, Dislocation mechanics of shock-induced plasticity, Metall. Mater. Trans. A, 38, 2605, 10.1007/s11661-007-9142-5
Arsenlis, 2007, Enabling strain hardening simulations with dislocation dynamics, Modell. Simul. Mater. Sci. Eng., 15, 553, 10.1088/0965-0393/15/6/001
Aubry, 2011, Energy barrier for homogeneous dislocation nucleation: comparing atomistic and continuum models, Scr. Mater., 64, 1043, 10.1016/j.scriptamat.2011.02.023
Austin, 2011, A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates, Int. J. Plast., 27, 1, 10.1016/j.ijplas.2010.03.002
Austin, 2012, Parameterization of a rate-dependent model of shock-induced plasticity for copper, nickel, and aluminum, Int. J. Plast., 32, 134, 10.1016/j.ijplas.2011.11.002
Balint, 2006, Size effects in uniaxial deformation of single and polycrystals, Modell. Simul. Mater. Sci. Eng., 14, 409, 10.1088/0965-0393/14/3/005
Benzerga, 2008, An analysis of echaustion hardening in micron-scale plasticity, Int. J. Plast., 24, 1128, 10.1016/j.ijplas.2007.08.010
Benzerga, 2004, Incorporating three-dimensional mechanisms into two-dimensional dislocation dynamics, Modell. Simul. Mater. Sci. Eng., 12, 159, 10.1088/0965-0393/12/1/014
Bitzek, 2004, Atomistic study of drag, surface and inertial effects on edge dislocations in face-centered cubic metals, Mater. Sci. Eng. A, 387–389, 11, 10.1016/j.msea.2004.01.092
Bitzek, 2005, Dynamic aspects of dislocation motion, Mater. Sci. Eng. A, 400–401, 40, 10.1016/j.msea.2005.03.047
Bringa, 2005, Ultrahigh strength in nanocrystalline materials under shock loading, Science, 309, 1838, 10.1126/science.1116723
Bringa, 2006, Shock deformation of face-centred-cubic metals on subnanosecond timescales, Nat. Mater., 5, 805, 10.1038/nmat1735
Brock, 1982, Dynamic solutions for the non-uniform motion of an edge dislocation, Int. J. Eng. Sci., 20, 113, 10.1016/0020-7225(82)90077-5
Brown, 1964, The self-stress of dislocations and the shape of extended nodes, Philos. Mag., 10, 441, 10.1080/14786436408224223
Bulatov, 2006
Cai, 2006, A non-singular continuum theory of dislocations, J. Mech. Phys. Solids, 54, 561, 10.1016/j.jmps.2005.09.005
Clifton, 1981, Elastic precursor decay and radiation from nonuniformly moving dislocations, J. Mech. Phys. Solids, 29, 227, 10.1016/0022-5096(81)90028-4
Crowhurst, 2011, Invariance of the dissipative action at ultrahigh strain rates above the strong shock threshold, Phys. Rev. B, 107, 144302
Davis, 1966, Nucleation rate of vacancy clusters in crystals, J. Appl. Phys., 37, 2112, 10.1063/1.1708745
Fan, 2012, Onset mechanism of strain-rate-induced flow stress upturn, Phys. Rev. Lett., 109, 135503, 10.1103/PhysRevLett.109.135503
Follansbee, P.S., Regazzoni, G., Kocks, U.F., 1984. The transition to drag controlled deformation in copper at high strain rates. In: Harding, J. (Ed.), Proceedings of the Third International Conference on Mechanical Properties of Materials at High Strain Rates, vol. 3 of 70. Institute of Physics, London, pp. 71–80.
Foreman, 1967, The bowing of a dislocation segment, Philos. Mag., 15, 1011, 10.1080/14786436708221645
Friedli, 1975, Aluminum under high pressure. I. Equation of state, Phys. Rev. B, 12, 5552, 10.1103/PhysRevB.12.5552
Gilman, 1969
Grady, 2010, Structured shock waves and the fourth-power law, J. Appl. Phys., 107, 013506, 10.1063/1.3269720
Gurrutxaga-Lerma, 2015, The role of homogeneous nucleation in planar dynamic discrete dislocation plasticity, J.Appl.Mech, 82, 071008, 10.1115/1.4030320
Gurrutxaga-Lerma, 2013, A dynamic discrete dislocation plasticity method for the simulation of plastic relaxation under shock loading, Proc. R. Soc. A, 469, 20130141, 10.1098/rspa.2013.0141
Gurrutxaga-Lerma, B., Balint, D.S., Dini, D., Eakins, D.E., Sutton, A.P., 2014. Dynamic discrete dislocation plasticity. Advances in Applied Mechanics, vol. 47. London, Elsevier (Chapter 2).
Gurrutxaga-Lerma, 2015, Attenuation of the dynamic yield point of shocked aluminum using elastodynamic simulations of dislocation dynamics, Phys. Rev. Lett., 114, 174301, 10.1103/PhysRevLett.114.174301
Gutkin, 2006, Special mechanism for dislocation nucleation in nanomaterials, Appl. Phys. Lett., 88, 211901, 10.1063/1.2206095
Gutkin, 2008, Homogeneous nucleation of dislocation loops in nanocrystalline metals and ceramics, Acta Mater., 56, 1642, 10.1016/j.actamat.2007.12.004
Hirth, 1982
Hirth, 1998, Forces on high velocity dislocations, Modell. Simul. Mater. Sci. Eng., 6, 165, 10.1088/0965-0393/6/2/006
Huang, 1989, Microband formation in shock-loaded and quasi-statically deformed metals, Acta Metall., 37, 3335, 10.1016/0001-6160(89)90206-X
Hull, 2011
Iserles, 2009, vol. 44
Johnston, 1959, Dislocation velocities, dislocation densities, and plastic flow in lithium fluoride crystals, J. Appl. Phys., 30, 129, 10.1063/1.1735121
Klopp, 1985, Pressure-shear impact and the dynamic viscoplastic response of metals, Mech. Mater., 4, 375, 10.1016/0167-6636(85)90033-X
Koizumi, 2002, Lattice wave emission from a moving dislocation, Phys. Rev. B, 65, 214104, 10.1103/PhysRevB.65.214104
Lloyd, 2014, Simulation of shock wave propagation in single crystal and polycrystalline aluminum, Int. J. Plast., 60, 118, 10.1016/j.ijplas.2014.04.012
Malygin, 2013, On the power-law pressure dependence of the plastic strain rate of crystals under intense shock wave loading, Phys. Solid State, 55, 780, 10.1134/S1063783413040197
Markenscoff, 1980, The transient motion of a nonuniformly moving dislocation, J. Elast., 10, 193, 10.1007/BF00044503
Markenscoff, 1981, The nonuniformly moving edge dislocation, J. Mech. Phys. Solids, 29, 253, 10.1016/0022-5096(81)90029-6
Meyers, 1978, A mechanism for dislocation generation in shock-wave deformation, Scr. Metall., 12, 21, 10.1016/0036-9748(78)90219-3
Meyers, 1994
Meyers, 2003, Laser-induced shock compression of monocrystalline copper: characterization and analysis, Acta Mater., 51, 1211, 10.1016/S1359-6454(02)00420-2
Meyers, 2009, Dislocations in shock compression and release, vol. 15, 94
Murr, 1988, 315
Murr, 1978, Experimental and theoretical observations on the relationship between dislocation cell size, dislocation density, residual hardness, peak pressure and pulse duration in shock-loaded nickel, Acta Metall., 26, 847, 10.1016/0001-6160(78)90034-2
Ni, 2008, The self-force and effective mass of a generally accelerating dislocation I, J. Mech. Phys. Solids, 56, 1348, 10.1016/j.jmps.2007.09.002
Nix, 1971, Physics of strengthening mechanics in crystalline solids, Annu. Rev. Mater. Sci., 1, 313, 10.1146/annurev.ms.01.080171.001525
Olmsted, 2005, Atomistic simulations of dislocation mobility in Al, Ni and Al/Mg alloys, Modell. Simul. Mater. Sci. Eng., 13, 371, 10.1088/0965-0393/13/3/007
Pellegrini, 2014, Equation of motion and subsonic-transonic transitions of rectilinear edge dislocations, Phys. Rev. B, 90, 054120, 10.1103/PhysRevB.90.054120
Pillon, 2007, Equation of motion for dislocations with inertial effects, Phys. Rev. B, 76, 224105, 10.1103/PhysRevB.76.224105
Price, 1963, 41
Reed-Hill, 2009
Regazzoni, 1987, Dislocation kinetics at high strain rates, Acta Metall., 35, 2865, 10.1016/0001-6160(87)90285-9
Shishvan, 2010, Distribution of dislocation source length and the size dependent yield strength in freestanding thin films, J. Mech. Phys. Solids, 58, 678, 10.1016/j.jmps.2010.02.011
Shishvan, 2008, A dislocation-dynamics-based derivation of the Frank–Read source characteristics for discrete dislocation plasticity, Modell. Simul. Mater. Sci. Eng., 16, 075002, 10.1088/0965-0393/16/7/075002
Swegle, 1985, Shock viscosity and the prediction of shock wave rise times, J. Appl. Phys., 58, 692, 10.1063/1.336184
Taylor, 1969
Tschopp, 2008, Influence of single crystal orientation on homogeneous dislocation nucleation under uniaxial loading, J. Mech. Phys. Solids, 56, 1806, 10.1016/j.jmps.2007.11.012
Tsuzuki, 2008, Accelerating dislocations to transonic and supersonic speeds in anisotropic metals, Appl. Phys. Lett., 92, 191909, 10.1063/1.2921786
Van der Giessen, 1995, Discrete dislocation plasticity, Modell. Simul. Mater. Sci. Eng., 3, 689, 10.1088/0965-0393/3/5/008
Wang, 2007, The importance of cross-slip in high-rate deformation, Modell. Simul. Mater. Sci. Eng., 15, 675, 10.1088/0965-0393/15/6/006
Weertman, J., 1961. High velocity dislocations. In: Shewmon, P.G., Zackay, V.F. (Eds.), Response of Metals to High Velocity Deformation. Metallurgical Society Conferences, vol. 9. Metallurgical Society of AIME. Interscience, New York, pp. 205–249.
Weertman, 1986, Plastic deformation behind strong shock waves, Mech. Mater., 5, 13, 10.1016/0167-6636(86)90012-8
Weertman, 1988, Dislocation dynamics and plastic shock waves, Mech. Mater., 7, 177, 10.1016/0167-6636(88)90017-8
Weertman, 1980, Moving dislocations, vol. 3, 3
Zaretsky, 1995, Dislocation multiplication behind the shock front, J. Appl. Phys., 78, 3740, 10.1063/1.359954