The mechanism of proton conduction in phosphoric acid
Tóm tắt
Từ khóa
Tài liệu tham khảo
DeCoursey, T. E. Voltage-gated proton channels and other proton transfer pathways. Physiol. Rev. 83, 475–579 (2003).
Wraight, C. A. Chance and design — proton transfer in water, channels and bioenergetic proteins. Biochim. Biophys. Acta 1757, 886–912 (2006).
Kreuer, K. D., Paddison, S. J., Spohr, E. & Schuster, M. Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chem. Rev. 104, 4637–4678 (2004).
Marx, D. Proton transfer 200 years after von Grotthuss: insights from ab initio simulations. ChemPhysChem 7, 1848–1870 (2006).
Marx, D., Chandra, A. & Tuckerman, M. E. Aqueous basic solutions: hydroxide solvation, structural diffusion, and comparison to the hydrated proton. Chem. Rev. 110, 2174–2216 (2010).
Tuckerman, M. E., Marx, D., Klein, M. L. & Parrinello, M. On the quantum nature of the shared proton in hydrogen bonds. Science 275, 817–820 (1997).
Marx, D., Tuckerman, M. E., Hutter, J. & Parrinello, M. The nature of the hydrated excess proton in water. Nature 397, 601–604 (1999).
Tuckerman, M. E., Marx, D. & Parrinello, M. The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature 417, 925–929 (2002).
Vuilleumier, R. & Borgis, D. Transport and spectroscopy of the hydrated proton: a molecular dynamics study. J. Chem. Phys. 111, 4251–4266 (1999).
Schmitt, U. W. & Voth, G. A. The computer simulation of proton transport in water. J. Chem. Phys. 111, 9361–9381 (1999).
Markovitch, O. et al. Special pair dance and partner selection: elementary steps in proton transport in liquid water. J. Phys. Chem. B 112, 9456–9466 (2008).
Berkelbach, T. C., Lee, H.-S. & Tuckerman, M. E. Concerted hydrogen-bond dynamics in the transport mechanism of the hydrated proton: a first-principles molecular dynamics study. Phys. Rev. Lett. 103, 238302 (2009).
Woutersen, S. & Bakker, H. J. Ultrafast vibrational and structural dynamics of the proton in liquid water. Phys. Rev. Lett. 96, 138305 (2006).
de Grotthuss, C. J. T. Sur la décomposition de l'eau et des corps qu'elle tient en dissolution à l'aide de l'électricité galvanique. Ann. Chim. (Paris) LVIII, 54–74 (1806).
Marcus, R. A. On the theory of oxidation–reduction reactions involving electron transfer. I. J. Chem. Phys. 24, 966–978 (1956).
Kreuer, K. D. On the complexity of proton conduction phenomena. Solid State Ionics 136, 149–160 (2000).
Dellago, C., Naor, M. & Hummer, G. Proton transport through water-filled carbon nanotubes. Phys. Rev. Lett. 90, 105902 (2003).
Car, R. & Parrinello, M. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985).
Li, Q., Jensen, J. O., Savinell, R. F. & Bjerrum, N. J. High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog. Polym. Sci. 34, 449–477 (2009).
Boysen, D. A., Uda, T., Chisholm, C. R. I. & Haile, S. M. High-performance solid acid fuel cells through humidity stabilization. Science 303, 68–70 (2004).
Schuster, M., Rager, T., Noda, A., Kreuer, K. D. & Maier, J. About the choice of the protogenic group in PEM separator materials for intermediate temperature, low humidity operation: a critical comparison of sulfonic acid, phosphonic acid and imidazole functionalized model compounds. Fuel Cells 5, 355–365 (2005).
Heberle, J., Riesle, J., Thiedemann, G., Oesterhelt, D. & Dencher, N. A. Proton migration along the membrane-surface and retarded surface to bulk transfer. Nature 370, 379–382 (1994).
Tsuchida, E. Ab initio molecular-dynamics simulation of concentrated phosphoric acid. J. Phys. Soc. Jpn 75, 054801 (2006).
Vilciauskas, L., Paddison, S. J. & Kreuer, K. D. Ab initio modeling of proton transfer in phosphoric acid clusters. J. Phys. Chem. A 113, 9193–9201 (2009).
Greenwood, N. N. & Thompson, A. The mechanism of electrical conduction in fused phosphoric and trideuterophosphoric acids. J. Chem. Soc. 3485–3492 (1959).
Aihara, Y., Sonai, A., Hattori, M. & Hayamizu, K. Ion conduction mechanisms and thermal properties of hydrated and anhydrous phosphoric acids studied with 1H, 2H, and 31P NMR. J. Phys. Chem. B 110, 24999–25006 (2006).
Dippel, T., Kreuer, K. D., Lassègues, J. C. & Rodriguez, D. Proton conductivity in fused phosphoric acid: a 1H/31P PFG-NMR and QNS study. Solid State Ionics 61, 41–46 (1993).
Munson, R. A. Self-dissociative equilibria in molten phosphoric acid. J. Phys. Chem. 68, 3374–3377 (1964).
Janoschek, R., Weidemann, E. G., Zundel, G. & Pfeiffer, H. Extremely high polarizability of hydrogen bonds. J. Am. Chem. Soc. 94, 2387–2396 (1972).
Leuchs, M. & Zundel, G. Polarizable acid–acid and acid–water hydrogen bonds with H3PO2, H3PO3, H3PO4, and H3AsO4 . Can. J. Chem. 57, 487–493 (1979).
Komatsuzaki, T. & Ohmine, I. Energetics of proton transfer in liquid water. I. Ab initio study for origin of many-body interaction and potential energy surfaces. Chem. Phys. 180, 239–269 (1994).
Sharma, M., Resta, R. & Car, R. Dipolar correlations and the dielectric permittivity of water. Phys. Rev. Lett. 98, 247401 (2007).
Buchner, R., Barthel, J. & Stauber, J. The dielectric relaxation of water between 0 °C and 35 °C. Chem. Phys. Lett. 306, 57–63 (1999).
Geissler, P., Dellago, C., Chandler, D., Hutter, J. & Parrinello, M. Autoionization in liquid water. Science 291, 2121–2124 (2001).
Blessing, R. H. New analysis of the neutron diffraction data for anhydrous orthophosphoric acid and the structure of H3PO4 molecules in crystals. Acta Cryst. B 44, 334–340 (1988).
Pomès, R. & Roux, B. Molecular mechanism of H+ conduction in the single-file water chain of the gramicidin channel. Biophys. J. 82, 2304–2316 (2002).
Hassanali, A., Prakash, M. K., Eshet, H. & Parrinello, M. On the recombination of hydronium and hydroxide ions in water. Proc. Natl Acad. Sci. USA 108, 20410–20415 (2011).
CPMD, version 3.13 (Max-Planck-Institut für Festkörperforschung and IBM Zurich Research Laboratory, 1995–2010).
Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988).
Lee, C., Yang, W. & Parr, R. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron-density. Phys. Rev. B 37, 785–789 (1988).
Troullier, N. & Martins, J. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991).
Kohn, W. & Sham, L. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1131–A1138 (1965).
Spieser, S. A. H., Leeflang, B. R., Kroon-Batenburg, L. M. J. & Kroon, J. A force field for phosphoric acid: comparison of simulated with experimental data in the solid and liquid state. J. Phys. Chem. A 104, 7333–7338 (2000).
Martyna, G., Klein, M. & Tuckerman, M. Nosé–Hoover chains: the canonical ensemble via continuous dynamics. J. Chem. Phys. 97, 2635–2643 (1992).
Tuckerman, M. E., Berne, B. J., Martyna, G. J. & Klein, M. L. Efficient molecular dynamics and hybrid Monte Carlo algorithms for path integrals. J. Chem. Phys. 99, 2796–2808 (1993).