The mechanism of dissolution of minerals in acidic and alkaline solutions: Part V surface charge and zeta potential

Hydrometallurgy - Tập 161 - Trang 174-184 - 2016
Frank K. Crundwell1
1CM Solutions (Pty) Ltd, Building T5 Pinelands, 1 Ardeer Road, Modderfontein 1609, South Africa

Tóm tắt

Từ khóa


Tài liệu tham khảo

Berube, 1968, Adsorption at the rutile–solution interface III model of the electrochemical double layer, J. Colloid Interface Sci., 28, 92, 10.1016/0021-9797(68)90211-7

Bijsterbosch, 1978, Interfacial electrochemistry of silver iodide, Adv. Colloid Interf. Sci., 9, 147, 10.1016/0001-8686(87)80005-2

Crundwell, 2014, The mechanism of dissolution of minerals in acidic and alkaline solutions: part I — a new theory of non-oxidation dissolution, Hydrometallurgy, 149, 252, 10.1016/j.hydromet.2014.06.009

Crundwell, 2014, The mechanism of dissolution of minerals in acidic and alkaline solutions: part II — application to silicates, Hydrometallurgy, 149, 265, 10.1016/j.hydromet.2014.07.003

Crundwell, 2014, The mechanism of dissolution of minerals in acidic and alkaline solutions: part III — application to oxides and sulfides, Hydrometallurgy, 149, 71, 10.1016/j.hydromet.2014.06.008

Crundwell, 2014, The mechanism of dissolution of forsterite, the olivines and the other orthosilicate minerals, Hydrometallurgy, 150, 68, 10.1016/j.hydromet.2014.09.006

Crundwell, 2015, The mechanism of dissolution of minerals in acidic and alkaline solutions part IV equilibrium and near equilibrium behaviour, Hydrometallurgy, 153, 46, 10.1016/j.hydromet.2015.01.012

Crundwell, 2015, The mechanism of dissolution of the feldspars: part I dissolution at conditions far from equilibrium, Hydrometallurgy, 151, 151, 10.1016/j.hydromet.2014.10.006

Crundwell, 2015, The mechanism of dissolution of the feldspars: part II dissolution at conditions close to equilibrium, Hydrometallurgy, 151, 163, 10.1016/j.hydromet.2014.10.004

Crundwell, 2015, The mechanism of dissolution of minerals in acidic and alkaline solutions Part IV A molecular viewpoint, Hydrometallurgy, 161, 34, 10.1016/j.hydromet.2016.01.011

Crundwell, 1987, Kinetics of the non-oxidative dissolution of sphalerite, Hydrometallurgy, 17, 369, 10.1016/0304-386X(87)90065-X

Davis, 1978, Surface ionization and complexation at the oxide/water interface. I Computation of the electrical double layer properties in simple electrolytes, J. Colloid Interface Sci., 63, 480, 10.1016/S0021-9797(78)80009-5

Davis, 1978, Surface ionization and complexation at the oxide/water interface II surface properties of amorphous iron oxyhydroxide and adsorption of metal ions, J. Colloid Interface Sci., 67, 90, 10.1016/0021-9797(78)90217-5

Duval, 2002, Double layers at amphifunctionally electrified interfaces in the presence of electrolytes containing specifically adsorbing ions, J. Electroanal. Chem., 532, 337, 10.1016/S0022-0728(02)00718-0

Duval, 2001, Amphifunctionally electrified interfaces: coupling of electronic and ionic surface charging processes, Langmuir, 17, 7573, 10.1021/la010833i

Fawcett, 1989, Comparison of solvent effect in the kinetics of simple electron transfer and amalgam formation reactions, Langmuir, 5, 661, 10.1021/la00087a019

Fawcett, 1991, Double layer effects in the electrode kinetics of amalgam, J. Electroanal. Chem., 302, 13, 10.1016/0022-0728(91)85029-O

Gibb, 1990, Electrochemistry of a model for patchwise heterogeous surfaces — the rutile hematite system, J. Colloid Interface Sci., 134, 122, 10.1016/0021-9797(90)90258-P

Healy, 1978, Ionizable surface group models of aqueous interfaces, Adv. Colloid Interf. Sci., 9, 303, 10.1016/0001-8686(78)85002-7

Hiemstra, 1989, Multisite proton adsorption modelling at the solid/solution interface of (hydr)oxdes: a new approach. I Model description and evaluation of intrinsic reaction constants, J. Colloid Interface Sci., 133, 91, 10.1016/0021-9797(89)90284-1

Hiemstra, 1989, Multisite proton adsorption modelling at the solid/solution interface of (hydr)oxides: A new approach. II Application to various important (hydr)oxides, J. Colloid Interface Sci., 133, 105, 10.1016/0021-9797(89)90285-3

Holmes, 2000, The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: an electrochemical study, Geochim. Cosmochim. Acta, 64, 263, 10.1016/S0016-7037(99)00296-3

Honig, 1969, The point of zero charge and solid state properties of silver bromide, J. Colloid Interface Sci., 31, 545, 10.1016/0021-9797(69)90055-1

Honig, 1970, Solid state chemistry and colloid chemistry, Nature, 225, 537, 10.1038/225537a0

Hunter, 1981

James, 1972, Adsorption of hydrolyzable metal ions at the oxide–water interface I Co(II) adsorption on SiO2 and TiO2 as model systems, J. Colloid Interface Sci., 40, 42, 10.1016/0021-9797(72)90172-5

James, 1972, Adsorption of hydrolyzable metal ions at the oxide-water interface II charge reversal if SiO2 and TiO2 colloids by adsorbed Co(II), La(III) and Th(IV) as model systems, J. Colloid Interface Sci., 40, 53, 10.1016/0021-9797(72)90173-7

James, 1972, Adsorption of hydrolyzable metal ions at the oxide–water interface III a thermodynamic model of adsorption, J. Colloid Interface Sci., 40, 65, 10.1016/0021-9797(72)90174-9

Levine, 1971, Theory of the differential capacity of the oxide aqueous electrolyte interface, Disc. Faraday Soc., 52, 290, 10.1039/df9715200290

Levine, 1970, The effect of a diffuse layer in the solid phase at the silver iodide aqueous electrolyte interface, J. Colloid Interface Sci., 34, 549, 10.1016/0021-9797(70)90218-3

Levine, 1972, The discreteness-of-charge effect at charged aqueous interfaces, J. Electroanal. Chem. Interfacial Electrochem., 38, 253, 10.1016/S0022-0728(72)80337-1

Lorenz, 1962, Z. Phys. Chem., 219, 421, 10.1515/zpch-1962-21940

Lyklema, 2010, Molecular interpretation of electrokinetic potentials, Curr. Opin. Colloid Interface Sci., 15, 125, 10.1016/j.cocis.2010.01.001

Lyklema, 1961, On the interpretation of electrokinetic potentials, J. Colloid Sci., 16, 501, 10.1016/0095-8522(61)90029-0

Lyklema, 2011, Surface charges and electrokinetic charges — distinctions and juxtapositionings, Colloids Surf. A Physicochem. Eng. Asp., 376, 2, 10.1016/j.colsurfa.2010.09.021

Morrison, 1980

Nduna, 2014, A model for the zeta potential of copper sulfide, Colloids Surf. A Physicochem. Eng. Asp., 441, 643, 10.1016/j.colsurfa.2013.10.024

Nicolau, 1992, An electrokinetic study of ZnS and CdS surface chemistry, J. Colloid Interface Sci., 148, 551, 10.1016/0021-9797(92)90190-W

Oelkers, 2009, The surface chemistry of multi-oxide silicates, Geochim. Cosmochim. Acta, 73, 4617, 10.1016/j.gca.2009.05.028

Osseo-Asare, 1972

Parks, 1965, The isoelectric points of soli oxides, solid hydroxides and aqueous hyroxo complex systems, Chem. Rev., 65, 177, 10.1021/cr60234a002

Press, 2007

Pulfer, 1984, Kinetics and mechanisms of dissolution of bayerite (γ-Al2O3) in HNO3–HF solutions at 298.2K, J. Colloid Interface Sci., 101, 554, 10.1016/0021-9797(84)90067-5

Romankiw, 1965, The kinetics of dissolution of zinc sulphide in aqueous sulphuric acid

Smith, 1976, Electrokinetics of the oxide solution interface, J. Colloid Interface Sci., 55, 525, 10.1016/0021-9797(76)90062-X

Van Riemsdijk, 1986, Electrolyte adsorption on heterogeneous surfaces- adsorption models, J. Colloid Interface Sci., 109, 219, 10.1016/0021-9797(86)90296-1

Van Riemsdijk, 1987, Metal ion adsorption on heterogeneous surfaces - adsorption models, J. Colloid Interface Sci., 116, 511, 10.1016/0021-9797(87)90147-0

Wagner, 1938, Uber die deutung von korrosionsvorgangendurch oberlagerung von elektrochemischen teilvorgangen und uber die potentialbildung an mischelektroden, Z. Elektrochem., 44, 391

Westall, 1980, A comparison of electrostatic models for the oxide-solution interface, Adv. Colloid Interf. Sci., 12, 265, 10.1016/0001-8686(80)80012-1

Wiese, 1975, Coagulation and electrokinetic behaviour of TiO2 and Al2O3 colloidal suspensions, J. Colloid Interface Sci., 51, 427, 10.1016/0021-9797(75)90139-3

Williams, 1985, Zinc sulfide surface chemistry — an electrokinetic study, J. Colloid Interface Sci., 106, 251, 10.1016/0021-9797(85)90404-7

Yapps, 1964, The zero point of charge of alpha-alumina, J. Colloid Sci., 19, 61, 10.1016/0095-8522(64)90007-8

Zhang, 1995, Surface ionization and complexation at the sphalerite–water interface I computation of electrical double layer properties of sphalerite in a simple electrolyte, J. Colloid Interface Sci., 169, 414, 10.1006/jcis.1995.1051