The meccano method for isogeometric solid modeling and applications
Tóm tắt
We present a new method to construct a trivariate T-spline representation of complex solids for the application of isogeometric analysis. We take a genus-zero solid as a basis of our study, but at the end of the work we explain the way to generalize the results to any genus solids. The proposed technique only demands a surface triangulation of the solid as input data. The key of this method lies in obtaining a volumetric parameterization between the solid and the parametric domain, the unitary cube. To do that, an adaptive tetrahedral mesh of the parametric domain is isomorphically transformed onto the solid by applying a mesh untangling and smoothing procedure. The control points of the trivariate T-spline are calculated by imposing the interpolation conditions on points sited both on the inner and on the surface of the solid. The distribution of the interpolating points is adapted to the singularities of the domain to preserve the features of the surface triangulation. We present some results of the application of isogeometric analysis with T-splines to the resolution of Poisson equation in solids parameterized with this technique.
Tài liệu tham khảo
Bazaraa MS, Sherali HD, Shetty CM (1993) Nonlinear programing: theory and algorithms. Wiley, New York
Bazilevs Y, Calo VM, Cottrell JA, Evans J, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199:229–263
Bazilevs Y, Calo VM, Cottrell JA, Evans J, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2008) Isogeometric analysis: toward unification of computer aided design and finite element analysis. In: Trends in Engineering Computational Technology. Saxe-Coburg Publications, Stirling, pp 1–16
Borouchaki H, Frey PJ (2005) Simplification of surface mesh using Hausdorff envelope. Comput Methods Appl Mech Eng 194:4864–4884
Buffa A, Cho D, Sangalli G (2010) Linear independence of the T-spline blending functions associated with some particular T-meshes. Comput Methods Appl Mech Eng 199:1437–1445
Carey GF, Oden JT (1982) Finite elements, a second course. Prentice-Hall, New Jersey
Cascón JM, Montenegro R, Escobar JM, Rodríguez E, Montero G (2007) A new meccano technique for adaptive 3-D triangulations. In: Proceedings of the 16th International Meshing Roundtable. Springer, Berlin, pp 103–120
Cascón JM, Montenegro R, Escobar JM, Rodríguez E, Montero G (2009) The meccano method for automatic tetrahedral mesh generation of complex genus-zero solids. In: Proceedings of 18th International Meshing Roundtable. Springer, Berlin, pp 463–480
Cohen E, Martin T, Kirby RM, Lyche T, Riesenfeld RF (2010) Analysis-aware modeling: understanding quality considerations in modeling for isogeometric analysis. Comput Methods Appl Mech Eng 199:334–356
Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, Chichester
Escobar JM, Rodríguez E, Montenegro R, Montero G, González-Yuste JM (2003) Simultaneous untangling and smoothing of tetrahedral meshes. Comput Methods Appl Mech Eng 192:2775–2787
Escobar JM, Rodríguez E, Montenegro R, Montero G, González-Yuste JM (2010) SUS Code—simultaneous mesh untangling and smoothing code. http://www.dca.iusiani.ulpgc.es/proyecto2012-2014
Escobar JM, Cascón JM, Rodríguez E, Montenegro R (2011) A new approach to solid modeling with trivariate T-splines based on mesh optimization. Comput Methods Appl Mech Eng 200:3210–3222
Escobar JM, Cascón JM, Rodríguez E, Montenegro R (2011) The meccano method for isogeometric solid modeling. In: Proceedings of the 20th International Meshing Roundtable. Springer, Berlin, pp 551–568
Floater MS (1997) Parametrization and smooth approximation of surface triangulations. Comput Aided Geom Des 14:231–250
Floater MS (2003) Mean value coordinates. Comput Aided Geom Des 20:19–27
Floater MS, Hormann K (2005) Surface parameterization: a tutorial and survey. In: Advances in Multiresolution for Geometric Modeling, Mathematics and Visualization. Springer, Berlin, pp 157–186
Hormann K, Lévy B, Sheffer A (2007) Mesh parameterization: theory and practice. In: SIGGRAPH ’07: ACM SIGGRAPH 2007 courses. ACM Press, New York
Knupp PM (2001) Algebraic mesh quality metrics. SIAM J Sci Comput 23:193–218
Kossaczky I (1994) A recursive approach to local mesh refinement in two and three dimensions. J Comput Appl Math 55:275–288
Li X, Guo X, Wang H, He Y, Gu X, Qin H (2007) Harmonic volumetric mapping for solid modeling applications. In: Proceedings of ACM solid and physical modeling symposium. Association for Computing Machinery, Inc., New York, 109–120
Li B, Li X, Wang K (2010) Generalized PolyCube trivariate splines. In: SMI 2010—International conference of shape modeling and applications, pp 261–265
Li X, Zheng J, Sederberg TW, Hughes TJR, Scott MA (2012) On linear independence of T-spline blending functions. Comput Aided Geom Des 29:63–76
Lin J, Jin X, Fan Z, Wang CCL (2008) Automatic PolyCube-Maps. Lect Notes Comput Sci 4975:3–16
Martin T, Cohen E, Kirby RM (2009) Volumetric parameterization and trivariate B-spline fitting using harmonic functions. Comput Aided Geom Des 26:648–664
Martin T, Cohen E (2010) Volumetric parameterization of complex objects by respecting multiple materials. Comput Graph 34:187–197
Montenegro R, Cascón JM, Escobar JM, Rodríguez E, Montero G (2009) An automatic strategy for adaptive tetrahedral mesh generation. Appl Numer Math 59:2203–2217
Montenegro R, Cascón JM, Rodríguez E, Escobar JM, Montero G (2010) The meccano method for automatic 3-D triangulation and volume parametrization of complex solids. Comput Sci Eng Technol Ser 26:19–48
Piegl L, Tiller W (1997) The NURBS book. Springer, New York
Scott MA, Borden M, Verhoosel CV, Sederberg TW, Hughes TJR (2011) Isogeometric finite element data structures based on Bézier extraction of T-splines. Int J Numer Methods Eng 88:126–156
Scott MA, Li X, Sederberg TW, Hughes TJR (2012) Local refinement of analysis-suitable T-splines. Comput Methods Appl Mech Eng 213-216:206–222
Sederberg TW, Zheng J, Bakenov A, Nasri A (2003) T-splines and T-NURCCSs. ACM Trans Graph 22:477–484
Song W, Yang X (2005) Free-form deformation with weighted T-spline. Vis Comput 21:139–155
Tarini M, Hormann K, Cignoni P, Montani C (2004) Polycube-maps. ACM Trans Graph 23:853–860
Verfürth R (1996) A review of a posteriori error estimation and adaptiveMesh-refinement technique. Wiley-Teubner, Chichester
Wang H, He Y, Li X, Gu X, Qin H (2008) Polycube splines. Comput Aided Geom Des 40:721–733
Xu G, Mourrain B, Duvigneau R, Galligo A (2010) Optimal analysis-aware parameterization of computational domain in isogeometric analysis. Lect Notes Comput Sci 6130:236–254
Xu G, Mourrain B, Duvigneau R, Galligo A (2010) Parametrization of computational domain in isogeometric analysis: methods and comparison. INRIA-00530758, pp 1–29