Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Quản lý quá trình lão hóa trong cấu trúc bê tông của nhà máy điện hạt nhân
Tóm tắt
Trong bài báo này, các cấu trúc bê tông của nhà máy điện hạt nhân được mô tả và kinh nghiệm hoạt động của chúng được ghi nhận. Những cân nhắc chính liên quan đến việc quản lý sự lão hóa của chúng được đề cập, bao gồm: cơ chế suy thoái, mô hình hóa thiệt hại, và hiệu suất vật liệu; đánh giá và sửa chữa; và ứng dụng lý thuyết độ tin cậy của cấu trúc. Một số chủ đề được nêu ra, nơi mà nghiên cứu bổ sung sẽ có lợi.
Từ khóa
#nhà máy điện hạt nhân #cấu trúc bê tông #lão hóa #cơ chế suy thoái #mô hình hóa thiệt hại #hiệu suất vật liệu #đánh giá #sửa chữa #lý thuyết độ tin cậyTài liệu tham khảo
D.J. Naus, C.B. Oland, and B.R. Ellingwood, Report on Aging of Nuclear Power Plant Reinforced Concrete Structures, NUREG/CR-6424 (Washington, D.C.: U.S. Nuclear Regulatory Commission, March 1996).
D.J. Naus, Concrete Component Aging and Its Significance Relative to Life Extension of Nuclear Power Plants, NUREG/CR-4652 (Washington, D.C.: U.S. Nuclear Regulatory Commission, September 1986).
H. Ashar and G. Bagchi, Assessment of Inservice Conditions of Safety-Related Nuclear Plant Structures, NUREG-1522 (Washington, D.C.: U.S. Nuclear Regulatory Commission, July 1995).
J.I. Braverman et al., Assessment of Age-Related Degradation of Structures and Passive Components for U.S. Nuclear Power Plants, NUREG/CR-6679 (Washington, D.C.: U.S. Nuclear Regulatory Commission, August 2000).
Assessment and Management of Major Nuclear Power Plant Components Important to Safety: Concrete Containment Buildings, IAEA-TECDOC-1025 (Vienna, Austria: International Atomic Energy Agency, June 1998).
Building Code Requirements for Structural Concrete and Commentary, ACI Standard 318-05 (Farmington Hills, MI: American Concrete Institute, November 2005).
D.J. Naus, Primer on Durability of Nuclear Power Plant Reinforced Concrete Structures—A Review of Pertinent Factors, NUREG/CR-6927 (Washington, D.C.: U.S. Nuclear Regulatory Commission, February 2007).
ACI Committee 365, “Service-Life Prediction,” ACI 365.1R-00 (Farmington Hills, MI: American Concrete Institute, 2000).
C.B. Oland and D.J. Naus, Summary of Materials Contained in the Structural Materials Information Center, ORNL/NRC/LTR-94/22 (Oak Ridge, TNL Martin Marietta Energy Systems, Inc., Oak Ridge National Laboratory, November 1994).
D.J. Naus and C.B. Oland, “An Investigation of Tendon Sheathing Filler Migration in Concrete,” NUREG/CR-6598 (Washington, D.C.: U.S. Nuclear Regulatory Commission, March 1998).
J.A. Christensen, “NPAR Approach to Controlling Aging in Nuclear Power Plants,” Proceedings of the 17th Water Reactor Safety Information Meeting, Vol. 3, NUREG/CP-0105 (Washington, D.C.: U.S. Nuclear Regulatory Commission, 1990), pp. 509–529.
C.J. Hookham, Structural Aging Assessment Methodology for Concrete Structures in Nuclear Power Plants, ORNL/NRC/LTR-90/17 (Oak Ridge, TN: Martin Marietta Energy Systems, Inc., Oak Ridge National Laboratory, March 1991).
F.E. Gregor and J.J. Carey, “COSTAR—COncrete STructures Aging Reference Manual A Structures Condition Assessment Tool,” Transactions of the 16th International Conference on Structural Materials in Reactor Technology, paper #1310 (Raleigh, NC: North Carolina State University, IASMiRTAASMiRT, August 2001).
B.R. Ellingwood, Aging Effects on Probabilistic Risk Assessment, NUREG/CR-6425 (Washington, D.C.: U.S. Nuclear Regulatory Commission, January 1996).
O. Jovall et al., “Concrete Containment Modeling and Management, Conmod,” Transactions of the 17th International Conference on Structural Mechanics in Reactor Technology, Paper H04-4 (Raleigh, NC: North Carolina State University, IASMiRTAASMiRT, 17–22 August 2003).
Guidelines for Structural Condition Assessment of Existing Buildings, SEI/ASCE 11-99 (Reston, VA: American Society of Civil Engineers, 2000).
Evaluation of Existing Nuclear Safety Related Concrete Structures, ACI 349R.3-02 (Farmington Hills, MI: American Concrete Institute, 2002).
In-Place Methods for Estimating Concrete Strength, ACI 228.1R-03 (Farmington Hills, MI: American Concrete Institute, 2003).
Nondestructive Test Methods for Evaluation of Concrete in Structures, ACI 228.2R-98 (Farmington Hills, MI: American Concrete Institute, 1998).
A Practical Guide to Non-Destructive Examination of Concrete, Nordic Innovation Center Report (Helsingborg, Sweden: Force Technology, 2004).
C.J. Hookham, In-Service Inspection Guidelines for Concrete Structures in Nuclear Power Plants, ORNL/NRC/LTR-95/14 (Oak Ridge, TN: Lockheed Martin Energy Systems, Inc., Oak Ridge National Laboratory, 1995).
P.H. Emmons, Concrete Repair and Maintenance Illustrated (Kingston, MA: R.S. Means Company, Inc., 1993).
B.R. Ellingwood, “Acceptable Risk Bases for Design of Structures,” Progress in Structural Engineering and Materials, 3(2) (2001), pp. 170–179.
Y.K. Wen and B.R. Ellingwood, “The Role of Fragility Assessment in Consequence-Based Engineering,” Earthquake Spectra, EERI 21(3) (2005), pp. 861–877.
B.R. Ellingwood and D.J. Naus, “Chapter 6, Aging Nuclear Structures,” Modeling Complex Engineering Structures, ed. R.E. Melchers and R. Hough (Reston, VA: American Society of Civil Engineers, 2007), pp. 137–170.
P. Anderson, M. Hansson, and S. Thelandersson, “Reliability-Based Evaluation of the Prestress Level in Concrete Containments with Unbonded Tendons,” Structural Safety, 30(1) (2008), pp. 78–89.
J.I. Braverman et al., “Probability-Based Evaluation of Degraded Reinforced Concrete Components in Nuclear Power Plants,” NUREG/CR-6715 (Washington, D.C.: U.S. Nuclear Regulatory Commission, March 2001).