Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Hoạt động hình thành bộ gen động vật có vú của enzyme phiên mã ngược
Tóm tắt
Enzyme phiên mã ngược xúc tác quá trình chuyển đổi RNA thành DNA. Hoạt động này dường như đã góp phần lớn vào sự tiến hóa của các bộ gen phức tạp. Hơn 10% bộ gen của động vật có vú bao gồm các trình tự có nguồn gốc từ phiên mã ngược, trong đó phần lớn là các trình tự được lặp lại (SINEs, LINEs). Mặc dù đơn giản, nhưng các trình tự này có thể đóng vai trò chính trong tiến hóa bằng cách thúc đẩy tái tổ hợp không hợp lệ. Ngoài lượng vật liệu dồi dào này, các trình tự được retrotransposed bao gồm retrotransposons, retrovirus và các gen thiếu các trình tự xen kẽ, được gọi là pseudogenes. Một số trình tự này có thể có chức năng hoặc tham gia vào việc điều hòa các gen lân cận. Những dấu ấn của hoạt động phiên mã ngược cho thấy rằng nó đã đóng góp lớn vào sự linh hoạt của các bộ gen hiện đại.
Từ khóa
#phiên mã ngược #bộ gen động vật có vú #tái tổ hợp không hợp lệ #retrotransposons #pseudogenesTài liệu tham khảo
Antequera, F. & A. Bird, 1993. Number of CpG islands and genes in human and mouse. Proc. Natl. Acad. Sci. 90: 11995–11999.
Ashworth, A., B. Skene, S. Swift & B. R. Lovell, 1990. Zfa is an expressed retroposon derived from an alternative transcript of the Zfx gene. EMBO J. 9: 1529–1534.
Bailey, A. D. & C. K. Shen, 1993. Sequential insertion of Alu family repeats into specific genomic sites of higher primates. Proc. Natl. Acad. Sci. 90: 7205–7209.
Baltimore, D., 1970. RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature 226: 1209–1211.
Bickmore, W. A. & A. T. Sumner, 1989. Mammalian chromosome banding—an expression of genome organization. Trends Genet. 5: 144–148.
Boeke, J. D., 1988. Retrotransposons, pp. 59–103 in RNA Genetics, edited by E. Domingo, J. J. Holland and P. Ahlquist, CRC Press, Boca Raton, Florida.
Boeké, J. D. & V. G. Corces, 1989. Transcription and reverse transcription of retrotransposons. Annu. Rev. Microbiol. 43: 403–434.
Boer, P. H., C. N. Adra, Y. F. Lau & M. W. McBurney, 1987. The testis-specific phosphoglycerate kinase gene pgk-2 is a recruited retroposon. Mol. Cell. Biol. 7: 3107–3112.
Bratthauer, G. L. & T. G. Fanning, 1992. Active LINE-1 retrotransposons in human testicular cancer. Oncogene 7: 507–510.
Bratthauer, G. L. & T. G. Fanning, 1993. LINE-1 retrotransposon expression in pediatric germ cell tumors. Cancer 71: 2383–2386.
Britten, R. J., 1986. Rates of DNA sequence evolution differ between taxonomic groups. Science 231: 1393–1398.
Brosius, J., 1991. Retroposons-Seeds of evolution. Science 251: 753.
Bull, J. J., I. J. Molineux & J. H. Werren, 1992. Selfish genes. Science 256: 65.
Burns, N. R., H. R. Saibil, N. S. White, J. F. Pardon, P. A. Timmins, S. M. Richardson, B. M. Richards, S. E. Adams, S. M. Kingsman & A. J. Kingsman, 1992. Symmetry, flexibility and permeability in the structure of yeast retrotransposon virus-like particles. EMBO J. 11: 1155–1164.
Burton, F. H., D. D. Loeb, S. F. Chao, C. A. III Hutchison & M. H. Edgell, 1985. Transposition of a long member of the L1 major interspersed DNA family into the mouse beta-globin gene locus. Nucleic Acids Res. 13: 5071–5084.
Casavant, N. C., S. C. Hardies, F. D. Funk, M. B. Comer, M. H. Edgell & C. A. III Hutchison, 1988. Extensive movement of LINES-1 sequences in beta-globin loci ofMus caroli andMus domesticus. Mol. Cell. Biol. 8: 4669–4674
Coffin, J., 1984. Endogenousviruses, pp. 1109–1203 in RNA Tumor Viruses: Molecular Biology of tumor Viruses (second ed.), edited by R. Weiss Teich, H. Varmus and J. Coffin. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
Coffin, J. M., 1988. Replication of retrovirus genome, pp. 3–22 in RNA Genetics, edited by E. Domingo, J. J. Holland and P. Ahlquist. CRC Press, Boca Raton, Florida.
Coffin, J. M., J. P. Stoye & W. N. Frankel, 1989. Genetics of endogenous murine leukemia viruses. Ann. N. Y. Acad. Sci. 567: 39–49.
Copeland, N. G., K. W. Hutchison & N. A. Jenkins, 1983. Excision of the DBA ecotropic provirus in dilute coat-color revertants of mice occurs by homologous recombination involving the viral LTRs. Cell 33: 379–387.
Dahl, H. H., R. M. Brown, W. M. Hutchison, C. Maragos & G. K. Brown, 1990. A testis-specific form of the human pyruvate dehydrogenase E1 alpha subunit is coded for by an intronless gene on chromosome 4. Genomics 8: 225–232.
Daniels, G. R. & P. L. Deininger, 1985. Repeat sequence families derived from mammalian tRNA genes. Nature 317: 819–822.
Darwin, C., 1859 (first ed.). On the origin of species. Murray, London.
Davies, B., S. Feo, E. Heard & M. Fried, 1989. A strategy to detect and isolate an intron-containing gene in the presence of multiple processed pseudogenes. Proc. Natl. Acad. Sci. 86: 6691–6695.
Deininger, P. L., 1989. SINEs: short interspersed repeated DNA elements in higher eukaryotes, pp. 619–636 in Mobile DNA, edited by D. E. Berg and M. M. Howe. American Society for Microbiology, Washington, D.C.
Deininger, P. L., M. A. Batzer, C. A. III Hutchison & M. H. Edgell, 1992. Master genes in mammalian repetitive DNA amplification. Trends Genet. 8: 307–311.
Deragon, J. M., D. Sinnett & D. Labuda, 1990. Reverse transcriptase activity from human embryonal carcinoma cells NTera2D1. EMBO J. 9: 3363–3368.
Dombroski, B. A., S. L. Mathias, E. Nanthakumar, A. F. Scott & H. H. J. Kazazian, 1991. Isolation of an active human transposable element. Science 254: 1805–1808.
Dombroski, B. A., A. F. Scott & H. H. J. Kazazian, 1993. Two additional potential retrotransposons isolated from a human L1 subfamily that contains an active retrotransposable element. Proc. Natl. Acad. Sci. 90: 6513–6517.
Dover, G., 1989. Molecular drive: a cohesive mode of species evolution. Nature 299: 111–117.
Ellis, N. A., P. J. Goodfellow, B. Pym, M. Smith, M. Palmer, A. M. Frischauf & P. N. Goodfellow, 1989. The pseudoautosomal boundary in man is defined by an Alu repeat sequence inserted on the Y chromosome. Nature 337: 81–84.
Evans, J. P. & R. D. Palmiter, 1991. Retrotransposition of a mouse L1 element. Proc. Natl. Acad. Sci. 88: 8792–8795.
Fincham, J. R. & G. R. Sastry, 1974. Controlling elements in maize. Annu. Rev. Genet. 8: 15–50.
Finegan, D. J., 1992. Transposable elements. Curr. Opin. Genet. Dev. 2: 861–867.
Fitch, D. H., W. J. Bailey, D. A. Tagle, M. Goodman L. Sieu & J. L. Slightom 1991. Duplication of the gamma-globin gene mediated by L1 long interspersed repetitive elements in an early ancestor of simian primates. Proc. Natl. Acad. Sci. 88: 7396–7400.
Ford-Doolittle, F. & C. Sapienza, 1980. Selfish genes, the phenotype paradigm and genome evolution. Nature 284: 601–603.
Fourel, G., C. Transy, B. C. Tennant & M. A. Buendia, 1992. Expression of the woodchuck N-myc2 retroposon in brain and in liver tumors is driven by a cryptic N-myc promoter. Mol Cell Biol 12: 5336–5344.
Fourel, G., C. Trepo, L. Bougueleret, B. Henglein, A. Ponzetto, P. Tiollais & M. A. Buendia, 1990. Frequent activation of N-myc genes by hepadnavirus insertion in woodchuck liver tumours. Nature 347: 294–298.
Fu, T. B. & J. Taylor, 1992. When retroviral reverse transcriptases reach the end of their RNA templates. J. Virol. 66: 4271–4278.
Garcia-Meunier, P., M. Etienne-Julan, P. Fort, M. Piechaczyk & F. Bonhomme, 1993. Concerted evolution in the GAPDH family of retrotransposed pseudogenes. Mamm. Genome 4: 695–703.
Hardies, S. C., S. L. Martin, C. F. Voliva, C. A. III Hutchison & M. H. Edgell, 1986. An analysis of replacement and synonymous changes in the rodent L1 repeat family. Mol. Biol. Evol. 3: 109–125.
Hardison, R. & W. Miller, 1993. Use of long sequence alignments to study the evolution and regulation of mammalian globin gene clusters. Mol. Biol. Evol. 10: 73–102.
Heidmann, O. & T. Heidmann, 1991. Retrotransposition of a mouse IAP sequence tagged with an indicator gene. Cell 64: 159–170.
Heidmann, T., O. Heidmann & J. F. Nicolas, 1988. An indicator gene to demonstrate intracellular transposition of defective retroviruses. Proc. Natl. Acad. Sci. 85: 2219–2223.
Hull, R. & H. Will, 1989. Molecular biology of viral and nonviral retroelements. Trends Genet. 5: 357–359.
Hutchison, C. A. III, S. C. Hardies, D. D. Loeb, W. Ronald-Shehee & M. H. Edgell, 1989. LINEs and related retroposons: Long interspersed repeated sequences in the eucaryotic genome, pp. 593–617. in Mobile DNA, edited by D. E. Berg and M. M. Howe. American Society for Microbilogy, Washington, D. C.
Hwu, H. R., J. W. Roberts, E. H. Davidson & R. J. Britten, 1986. Insertion and/or deletion of many repeated DNA sequences in human and higher ape evolution. Proc. Natl. Acad. Sci. 83: 3875–3879.
Inaguma, Y., N. Miyashita, K. Moriwaki, W. C. Huai, M. L. Jin, X. Q. He & H. Ikeda, 1991. Acquisition of two endogenous ecotropic murine leukemia viruses in distinct Asian wild mouse populations. J. Virol. 65: 1796–802.
Jaenisch, R., K. Harbers, A. Schnieke, J. Lohler, I. Chumakov, D. Jahner, D. Grotkopp & E. Hoffmann, 1983. Germ line integration of moloney murine leukemia virus at the Mov 13 locus leads to recessive lethal mutation and early embryonic death. Cell 32: 209–216.
Jenkins, N. A. & N. G. Copeland, 1985. High frequency germ line acquisition of ecotropic MuLV proviruses in SWR/J-RF/J hybrid mice. Cell 43: 811–819.
Jenkins, N. A., N. G. Copeland, B. A. Taylor & B. K. Lee, 1981. Dilute(d) coat color mutation of DBA/2J mice is associated with the site of integration of an ecotropic MuLV genome. Nature 293: 370–374.
Kazazian, H. H. J., C. Wong, H. Youssoufian, A. F. Scott, D. G. Phillips & S. E. Antonarakis, 1988. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332: 164–166.
Korenberg, J. R. & M. C. Rykowski, 1988. Human genome organization: Alu, LINEs, and the molecular structure of metaphase chromosome bands. Cell 53: 391–400.
Lehrman, M. A., J. L. Goldstein, D. W. Russell & M. S. Brown, 1987. Duplication of seven exons in LDL receptor gene caused by Alu-Alu recombination in a subject with familial hypercholesterolemia. Cell 48: 827–835.
Lehrman, M. A., D. W. Russell, J. L. Goldstein & M. S. Brown, 1987. Alu-Alu recombination deletes splice acceptor sites and produces secreted low density lipoprotein receptor in a subject with familial hypercholesterolemia. J. Biol. Chem. 262: 3354–3361.
Leibold, D. M., G. D. Swergold, M. F. Singer, R. E. Thayer, B. A. Dombroski & T. G. Fanning, 1990. Translation of LINE-1 DNA elements in vitro and in human cells. Proc. Natl. Acad. Sci. 87: 6990–6994.
Li, W. Y., R. Reddy, D. Henning, D. W. Russel & M. S. Brown, 1982. Nucleotide sequence of 7S RNA (homology to Alu DNA and LA 4.5S RNA). J. Biol. Chem. 257: 5136–5142.
Lin, C. S., D. A. Goldthwait & D. Samols, 1988. Identification of Alu transposition in human lung carcinoma cells. Cell 54: 153–159.
Liu, W. M. & C. W. Schmid, 1993. Proposed roles for DNA methylation in Alu transcriptional repression and mutational inactivation. Nucleic Acids Res. 21: 1351–1359.
Loreni, F., J. Stavenhagen, M. Kalff & D. M. Robins, 1988. A complex androgen-responsive enhancer resides 2 kilobases upstream of the mouse Slp gene. Mol. Cell. Biol. 8: 2350–2360.
Marks, J., J. P. Shaw, C. Perez-Stable, W. S. Hu, T. M. Ayres, C. Shen & C. K. Shen, 1986. the primate alpha-globin gene family: a paradigm of the fluid genome. Cold Spring Harbor Symp. Quant. Biol. 1: 499–508.
Martin, S. L., 1991. LINEs. Curr. Opin. Genet. Dev. 1: 505–508.
Martin, S. L., C. F. Voliva, F. H. Burton, M. H. Edgell & C. A. III Hutchison, 1984. A large interspersed repeat found in mouse DNA contains a long open reading frame that evolves as if it encodes a protein. Proc. Natl. Acad. Sci. 81: 2308–2312.
Mathias, S. L., A. F. Scott, H. H. J. Kazazian, J. D. Boeke & A. Gabriel, 1991. Reverse transcriptase encoded by a human transposable element. Science 254: 1808–1810.
McCarrey, J. R. & K. Thomas, 1987. Human testis-specific PGK gene lacks introns and possesses characteristics of a processed gene. Nature 326: 501–505.
McClintock, B., 1956. Controlling elements and the gene. Cold Spring Harbor Symp. Quant. Biol. 21: 197–216.
Miki, Y., I. Nishisho, A. Horii, Y. Miyoshi, J. Utsunomiya, K. W. Kinzler, B. Vogelstein & Y. Nakamura, 1992. Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. Cancer Res. 52:643–645.
Monesi, V., 1971. Chromosome activities during meiosis and spermiogenesis. J. Reprod. Fertil. 13: 1–14.
Muratani, K., T. Hada, Y. Yamamoto, T. Kaneko, Y. Shigeto, T. Ohue, J. Furuyama & K. Higashino, 1991. Inactivation of the cholinesterase gene by Alu insertion: possible mechanism for human gene transposition. Proc. Natl. Acad. Sci. 88: 11315–11319.
Narita, N., H. Nishio, Y. Kitoh, Y. Ishikawa, Y. Ishikawa, N. Minami, H. Nakamura & M. Matsuo, 1993. Insertion of a 5′ truncated L1 element into the 3′ end of exon 44 of the dystrophin gene resulted in skipping of the exon during splicing in a case of a Ducherine muscular dystrophy. J. Clin.Invest. 91: 1862–1867.
Nouvel, P., H. Philippe, H. Condamine & J. J. Panthier, 1993. Analysis of variability among endogenous ecotropic MuLV loci in laboratory mice. Virology 193: 450–455.
O'Brien, C. A. & J. B. Harley, 1992. Association of hY4 pseudogenes with Alu repeats and abundance of hY RNA-like sequences in thehuman genome. Gene 116: 285–289.
Oberbaumer, I., 1992. Retroposons do jump: a B2 element recently integrated in an 18S rDNA gene. Nucleic Acids Res. 20: 671–677.
Okada, N., 1991. SINEs. Curr. Opin. Genet. Dev. 1: 498–504.
Orgel, L. E. & F. H. C. Crick, 1980. Selfish DNA: the ultimate parasite. Nature 284: 604–607.
Packer, A. I., K. Manova & R. F. Bachvarova, 1993. A discrete LINE-1 transcript in mouse blastocysts. Dev. Biol. 157: 281–283.
Pardue, M. L., 1991. Dynamic instability of chromosomes and genomes. Cell 66: 427–431.
Peliska, J. A. & S. J. Benkovic, 1992. Mechanism of DNA strand transfer reactions catalysed by HIV-1 reverse transcriptase. Science 258: 1112–1118.
Quentin, Y., 1994. Emergence of master sequences in families of retrotransposons derived from 7SL RNA. Genetica (in press).
Robins, D. M. & L. C. Samuelson, 1992. Retrotransposons and the evolution of mammalian gene expression. Genetica 86: 191–201.
Rouyer, F., M. C. Simmler, D. C. Page & J. Weissenbach, 1987. A sex chromosome rearrangement in a human XX male caused by Alu-Alu recombination. Cell 51: 417–425
Rowe, W. P. & C. A. Kozak, 1980. Germ line reinsertions of AKR murine leukemia virus genomes in AKV-1 congenic mice. Proc. Natl. Acad. Sci. 77: 4871–4874.
Samuelson, L. C., K. Wiebauer, C. M. Snow & M. H. Meisler, 1990. Retroviral and pseudogene insertion sites reveal the lineage of human salivary and pancreatic amylase genes from a single gene during primate evolution. Mol. Cell. Biol. 10: 2513–2520.
Sawada, I. & C. W. Schmid, 1986. Primate evolution of the alphaglobin gene cluster and its Alu-like repeats. J. Mol. Biol. 192: 693–709.
Sawada, I., C. Willard, C. K. Shen, B. Chapman, A. C. Wilson & C. W. Schmid, 1985. Evolution of Alu family repeats since the divergence of human and chimpanzee. J. Mol. Evol. 22: 316–322.
Schnieke, A., M. Dziadek, J. Bateman, T. Mascara, K. Harbers, R. Gelinas & R. Jaenisch, 1987. Introduction of the human pro alpha 1(I) collagen gene into pro alpha 1(I)-deficient Mov-13 mouse cells leads to formation of functional mouse-human hybrid type I collagen. Proc. Natl. Acad. Sci. 84: 764–768.
Schnieke, A., K. Harbers & R. Jaenisch, 1983. Embryonic lethal mutation in mice induced by retrovirus insertion into the alpha 1(I) collagen gene. Nature 304: 315–320.
Schwartz, D. A., M. W. Dahm, L. Bai, S. Carnie & J. S. Norris, 1993. Construction of a retrotransposition indicator sequence using a neomycin resistance-encoding gene containing a functional intron. Gene 127: 233–236.
Servomaa, K. & T. Rytomaa, 1990. UV light and ionizing radiations cause programmed death of rat chloroleukaemiacells by inducing retropositions of a mobile DNA element (L1Rn). Int. J. Radiat. Biol. 57: 331–343.
Sharp, P. A., 1983. Conversion of RNA to DNA in mammals: Alulike elements and pseudogenes. Nature 301: 471–472.
Shen, M. R., M. A. Batzer & P. L. Deininger, 1991. Evolution of the master Alu gene(s). J. Mol. Evol. 33: 311–320.
Sinnett, D., C. Richer, J. M. Deragon & D. Labuda, 1992. Alu RNA transcripts in human embryonal carcinoma cells. Model of posttranscriptional selection of master sequences. J. Mol. Biol. 226: 689–706.
Stacey, A., R. Mulligan & R. Jaenisch, 1987. Rescue of type I collagen-deficient phenotype by retroviral-vector-mediated transfer of human pro alpha 1(I) collagen gene into Mov-13 cells. J. Virol. 61: 2549–2554.
Stavenhagen, J. B. & D. M. Robins, 1988. An ancient provirus has imposed androgen regulation on the adjacent mouse sex-limited protein gene. Cell 55: 247–254.
Stoppa-Lyonnet, D., P. E. Carter, T. Meo & M. Tosi, 1990. Clusters of intragenic Alu repeats predispose the human C1 inhibitor locus to deleterious rearrangements. Proc. Natl. Acad. Sci. 87: 1551–1555.
Tchenio, T. & T. Heidmann, 1991. Defective retroviruses can disperse in the human genome by intracellular transposition. J. Virol. 65: 2113–2118.
Tchenio, T. & T. Heidmann, 1992. High-frequency intracellular transposition of a defective mammalian provirus detected by an in situ colorimetric assay. J. Virol. 66: 1571–1578.
Tchenio, T., E. Segal-Bendirdjian & T. Heidmann, 1993. Generation of processed pseudogenes in murine cells. EMBO J. 12: 1487–1497.
Temin, H. M. & S. Mizutani, 1970. RNA-directed DNA polymerase in virions of Rous Sarcoma virus. Nature 226: 1211–1213.
Ting, C. N., M. P. Rosenberg, C. M. Snow, L. C. Samuelson & M. H. Meisler, 1992. Endogenous retroviral sequences are required for tissue-specific expression of a human salivary amylase gene. Gene Dev. 6: 1457–1465.
Vanin, E. F., 1985. Processed pseudogenes: characteristics and evolution. Annu. Rev. Genet. 19: 253–272.
Varmus, H., 1988. Retroviruses. Science 240: 1427–1435.
Wagner, M., 1986. A consideration of the origin of processed pseudogenes. Trends Genet. 2: 134–137.
Wallace, M. R., L. B. Andersen, A. M. SAulino, P. E. Gregory, T. W. Glover & F. S. Collins, 1991. A de novo Alu insertion results in neurofibromatosis type 1. Nature 353: 864–866.
Weiner, A. M., P. L. Deininger & A. Efstratiadis, 1986. Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu. Rev. Biochem. 55: 631–661.
Wichman, H. A., R. A. Van den Bussche, M. J. Hamilton & R. J. Baker, 1992. Transposable elements and the evolution of genome organization in mammals. Genetica 86: 287–293.
Wilde, C. D., 1986. Pseudogenes. Crit. Rev. Biochem. Mol. 19: 323–352.
Willard, C., H. T. Nguyen & C. W. Schmid, 1987. Existence of at least three distinct Alu subfamilies. J. Mol. Evol. 26: 180–186.
Wills, J. W. & R. C. Craven, 1991. Form, function, and use of retroviral Gag proteins. AIDS 5: 639–654.
Xiong, Y. & T. H. Eickbush, 1990. Origin and evolution of retrolements based upon their reverse transcriptase sequences. EMBO J. 9: 3353–3362.