The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons

Journal of Cell Science - Tập 120 Số 15 - Trang 2498-2506 - 2007
Masamitsu Sone1,2,3, Tetsutaro Hayashi3, Hiroshi Tarui3, Kiyokazu Agata3, Masatoshi Takeichi1,3, Shinichi Nakagawa2,3
1Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan
2Nakagawa Initiative Research Unit, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
3RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe, 650-0047 Japan

Tóm tắt

Recent transcriptome analyses have revealed that a large body of noncoding regions of mammalian genomes are actually transcribed into RNAs. Our understanding of the molecular features of these noncoding RNAs is far from complete. We have identified a novel mRNA-like noncoding gene, named Gomafu, which is expressed in a distinct set of neurons in the mouse nervous system. Interestingly, spliced mature Gomafu RNA is localized to the nucleus despite its mRNA-like characteristics, which usually act as potent export signals to the cytoplasm. Within the nucleus, Gomafu RNA is detected as numerous spots that do not colocalize with known nuclear domain markers. Gomafu RNA is extremely insoluble and remains intact after nuclear matrix preparation. Furthermore, heterokaryon assays revealed that Gomafu RNA does not shuttle between the nucleus and cytoplasm, but is retained in the nucleus after its transcription. We propose that Gomafu RNA represents a novel family of mRNA-like noncoding RNA that constitutes a cell-type-specific component of the nuclear matrix.

Từ khóa


Tài liệu tham khảo

Ambros, V. (2004). The functions of animal microRNAs. Nature431, 350-355.

Andersen, A. A. and Panning, B. (2003). Epigenetic gene regulation by noncoding RNAs. Curr. Opin. Cell Biol.15, 281-289.

Andersen, J. S., Lyon, C. E., Fox, A. H., Leung, A. K., Lam, Y. W., Steen, H., Mann, M. and Lamond, A. I. (2002). Directed proteomic analysis of the human nucleolus. Curr. Biol.12, 1-11.

Berezney, R. (1991). The nuclear matrix: a heuristic model for investigating genomic organization and function in the cell nucleus. J. Cell. Biochem.47, 109-123.

Blackshaw, S., Harpavat, S., Trimarchi, J., Cai, L., Huang, H., Kuo, W. P., Weber, G., Lee, K., Fraioli, R. E., Cho, S. H. et al. (2004). Genomic analysis of mouse retinal development. PLoS Biol.2, E247.

Brady, G. and Iscove, N. N. (1993). Construction of cDNA libraries from single cells. Meth. Enzymol.225, 611-623.

Braidotti, G., Baubec, T., Pauler, F., Seidl, C., Smrzka, O., Stricker, S., Yotova, I. and Barlow, D. P. (2004). The Air noncoding RNA: an imprinted cis-silencing transcript. Cold Spring Harb. Symp. Quant. Biol.69, 55-66.

Brockdorff, N. (2002). X-chromosome inactivation: closing in on proteins that bind Xist RNA. Trends Genet.18, 352-358.

Cao, X., Yeo, G., Muotri, A. R., Kuwabara, T. and Gage, F. H. (2006). Noncoding RNAs in the mammalian central nervous system. Annu. Rev. Neurosci.29, 77-103.

Carninci, P., Kasukawa, T., Katayama, S., Gough, J., Frith, M. C., Maeda, N., Oyama, R., Ravasi, T., Lenhard, B., Wells, C. et al. (2005). The transcriptional landscape of the mammalian genome. Science309, 1559-1563.

Carter, K. C., Taneja, K. L. and Lawrence, J. B. (1991). Discrete nuclear domains of poly(A) RNA and their relationship to the functional organization of the nucleus. J. Cell Biol.115, 1191-1202.

Carter, M. S., Doskow, J., Morris, P., Li, S., Nhim, R. P., Sandstedt, S. and Wilkinson, M. F. (1995). A regulatory mechanism that detects premature nonsense codons in T-cell receptor transcripts in vivo is reversed by protein synthesis inhibitors in vitro. J. Biol. Chem.270, 28995-29003.

Cheng, J., Kapranov, P., Drenkow, J., Dike, S., Brubaker, S., Patel, S., Long, J., Stern, D., Tammana, H., Helt, G. et al. (2005). Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science308, 1149-1154.

Clemson, C. M., McNeil, J. A., Willard, H. F. and Lawrence, J. B. (1996). XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J. Cell Biol.132, 259-275.

Cullen, B. R. (2003). Nuclear RNA export. J. Cell Sci.116, 587-597.

Custodio, N., Carmo-Fonseca, M., Geraghty, F., Pereira, H. S., Grosveld, F. and Antoniou, M. (1999). Inefficient processing impairs release of RNA from the site of transcription. EMBO J.18, 2855-2866.

Feng, J., Bi, C., Clark, B. S., Mady, R., Shah, P. and Kohtz, J. D. (2006). The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev.20, 1470-1484.

Fey, E. G. and Penman, S. (1988). Nuclear matrix proteins reflect cell type of origin in cultured human cells. Proc. Natl. Acad. Sci. USA85, 121-125.

Frischmeyer, P. A. and Dietz, H. C. (1999). Nonsense-mediated mRNA decay in health and disease. Hum. Mol. Genet.8, 1893-1900.

Fujimura, Y., Iwashita, M., Matsuzaki, F. and Yamamoto, T. (2006). MDGA1, an IgSF molecule containing a MAM domain, heterophilically associates with axon- and muscle-associated binding partners through distinct structural domains. Brain Res.1101, 12-19.

Ginger, M. R., Shore, A. N., Contreras, A., Rijnkels, M., Miller, J., Gonzalez-Rimbau, M. F. and Rosen, J. M. (2006). A noncoding RNA is a potential marker of cell fate during mammary gland development. Proc. Natl. Acad. Sci. USA103, 5781-5786.

Goodrich, J. A. and Kugel, J. F. (2006). Non-coding-RNA regulators of RNA polymerase II transcription. Nat. Rev. Mol. Cell Biol.7, 612-616.

Hall, L. L., Smith, K. P., Byron, M. and Lawrence, J. B. (2006). Molecular anatomy of a speckle. Anat. Rec. A Discov. Mol. Cell. Evol. Biol.288, 664-675.

Hatada, I., Morita, S., Obata, Y., Sotomaru, Y., Shimoda, M. and Kono, T. (2001). Identification of a new imprinted gene, Rian, on mouse chromosome 12 by fluorescent differential display screening. J. Biochem.130, 187-190.

Hongay, C. F., Grisafi, P. L., Galitski, T. and Fink, G. R. (2006). Antisense transcription controls cell fate in Saccharomyces cerevisiae. Cell127, 735-745.

Huang, S., Deerinck, T. J., Ellisman, M. H. and Spector, D. L. (1994). In vivo analysis of the stability and transport of nuclear poly(A)+ RNA. J. Cell Biol.126, 877-899.

Inagaki, S., Numata, K., Kondo, T., Tomita, M., Yasuda, K., Kanai, A. and Kageyama, Y. (2005). Identification and expression analysis of putative mRNA-like non-coding RNA in Drosophila. Genes Cells10, 1163-1173.

Keenan, R. J., Freymann, D. M., Stroud, R. M. and Walter, P. (2001). The signal recognition particle. Annu. Rev. Biochem.70, 755-775.

Kelley, R. L. (2004). Path to equality strewn with roX. Dev. Biol.269, 18-25.

Lamond, A. I. and Earnshaw, W. C. (1998). Structure and function in the nucleus. Science280, 547-553.

Lamond, A. I. and Spector, D. L. (2003). Nuclear speckles: a model for nuclear organelles. Nat. Rev. Mol. Cell Biol.4, 605-612.

Maquat, L. E. (2004). Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat. Rev. Mol. Cell Biol.5, 89-99.

Martens, J. A., Laprade, L. and Winston, F. (2004). Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene. Nature429, 571-574.

Masuyama, K., Taniguchi, I., Kataoka, N. and Ohno, M. (2004). RNA length defines RNA export pathway. Genes Dev.18, 2074-2085.

Mattick, J. S. (2003). Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms. BioEssays25, 930-939.

Mello, C. C. and Conte, D., Jr (2004). Revealing the world of RNA interference. Nature431, 338-342.

Misteli, T. (2000). Cell biology of transcription and pre-mRNA splicing: nuclear architecture meets nuclear function. J. Cell Sci.113, 1841-1849.

Nickerson, J. (2001). Experimental observations of a nuclear matrix. J. Cell Sci.114, 463-474.

Niwa, H., Yamamura, K. and Miyazaki, J. (1991). Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene108, 193-199.

Ota, T., Suzuki, Y., Nishikawa, T., Otsuki, T., Sugiyama, T., Irie, R., Wakamatsu, A., Hayashi, K., Sato, H., Nagai, K. et al. (2004). Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat. Genet.36, 40-45.

Pederson, T. (2000). Half a century of “the nuclear matrix”. Mol. Biol. Cell11, 799-805.

Prasanth, K. V., Rajendra, T. K., Lal, A. K. and Lakhotia, S. C. (2000). Omega speckles – a novel class of nuclear speckles containing hnRNPs associated with noncoding hsr-omega RNA in Drosophila. J. Cell Sci.113, 3485-3497.

Prasanth, K. V., Prasanth, S. G., Xuan, Z., Hearn, S., Freier, S. M., Bennett, C. F., Zhang, M. Q. and Spector, D. L. (2005). Regulating gene expression through RNA nuclear retention. Cell123, 249-263.

Reed, R. and Hurt, E. (2002). A conserved mRNA export machinery coupled to pre-mRNA splicing. Cell108, 523-531.

Saitoh, N., Spahr, C. S., Patterson, S. D., Bubulya, P., Neuwald, A. F. and Spector, D. L. (2004). Proteomic analysis of interchromatin granule clusters. Mol. Biol. Cell15, 3876-3890.

Sawata, M., Yoshino, D., Takeuchi, H., Kamikouchi, A., Ohashi, K. and Kubo, T. (2002). Identification and punctate nuclear localization of a novel noncoding RNA, Ks-1, from the honeybee brain. RNA8, 772-785.

Sawata, M., Takeuchi, H. and Kubo, T. (2004). Identification and analysis of the minimal promoter activity of a novel noncoding nuclear RNA gene, AncR-1, from the honeybee (Apis mellifera L.). RNA10, 1047-1058.

Spector, D. L. (2001). Nuclear domains. J. Cell Sci.114, 2891-2893.

Stein, G. S., Zaidi, S. K., Braastad, C. D., Montecino, M., van Wijnen, A. J., Choi, J. Y., Stein, J. L., Lian, J. B. and Javed, A. (2003). Functional architecture of the nucleus: organizing the regulatory machinery for gene expression, replication and repair. Trends Cell Biol.13, 584-592.

Stutz, F. and Izaurralde, E. (2003). The interplay of nuclear mRNP assembly, mRNA surveillance and export. Trends Cell Biol.13, 319-327.

Suzuki, S. C., Inoue, T., Kimura, Y., Tanaka, T. and Takeichi, M. (1997). Neuronal circuits are subdivided by differential expression of type-II classic cadherins in postnatal mouse brains. Mol. Cell. Neurosci.9, 433-447.