The low-energy N = 4 SYM effective action in diverse harmonic superspaces
Tóm tắt
Từ khóa
Tài liệu tham khảo
L. Brink, J. H. Schwarz, and J. Scherk, “Supersymmetric Yang-Mills theories,” Nucl. Phys. B 121, 77 (1977).
M. T. Grisaru, M. Rocek, and W. Siegel, “Zero value for the three-loop function in N = 4 supersymmetric Yang–Mills theory,” Phys. Rev. Lett. 45, 1063 (1980).
L. V. Avdeev, O. V. Tarasov, and A. A. Vladimirov, “Vanishing of the three-loop charge renormalization function in a supersymmetric gauge theory,” Phys. Lett. B 96, 94 (1980).
W. E. Caswell and D. Zanon, “Zero three-loop beta function in the N = 4 supersymmetric Yang-Mills theory,” Nucl. Phys. B 182, 125 (1981).
M. F. Sohnius and P. C. West, “Conformal invariance in N = 4 supersymmetric Yang–Mills theory,” Phys. Lett. B 100, 245 (1981).
J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Int. J. Theor. Phys. 38, 1113 (1999)
J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998); hep-th/9711200.
S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from noncritical string theory,” Phys. Lett. B 428, 105 (1998); hep-th/9802109.
E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2, 253 (1998); hep-th/9802150.
O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, “Large N field theories, string theory and gravity,” Phys. Rep. 323, 183 (2000); hepth/9905111.
K. Becker, M. Becker, and J. H. Schwarz, String Theory and M-Theory: A Modern Introduction (Univ. Pr., Cambridge, UK, 2007), p. 739.
A. A. Tseytlin, “Born-Infeld action, supersymmetry and string theory,” in The Many Faces of the Superworld, Ed. by M. A. Shifman (World Scientific, Singapore, 2000), pp. 417–452; hep-th/9908105.
M. Dine and N. Seiberg, “Comments on higher derivative operators in some SUSY field theories,” Phys. Lett. B 409, 239 (1997); hep-th/9705057.
N. Seiberg, “Notes on theories with 16 supercharges,” Nucl. Phys. Proc. Suppl. 67, 158 (1998); hepth/9705117.
B. de Wit, M. T. Grisaru, and M. Rocek, “Nonholomorphic corrections to the one-loop N = 2 super Yang-Mills action,” Phys. Lett. B 374, 297 (1996); hep-th/9601115.
U. Lindström, F. Gonzalez-Rey, M. Rocek, and R. von Unge, “On N = 2 low-energy effective actions,” Phys. Lett. B 388, 581 (1996); hep-th/9607089.
F. Gonzalez-Rey and M. Rocek, “Nonholomorphic N = 2 terms in N = 4 SYM: 1-loop calculation in N = 2 superspace,” Phys. Lett. B 434, 303 (1998); hep-th/9804010.
I. L. Buchbinder, E. I. Buchbinder, S. M. Kuzenko, and B. A. Ovrut, “The background field method for N= 2 super Yang-Mills theories in harmonic superspace,” Phys. Lett. B 417, 61 (1998); hep-th/9704214.
I. L. Buchbinder and S. M. Kuzenko, “Comments on the background field method in harmonic superspace: Non-holomorphic corrections in N = 4 SYM,” Mod. Phys. Lett. A 13, 1623 (1998); hep-th/9804168.
A. A. Tseytlin and K. Zarembo, “Magnetic interactions of D-branes and Wess-Zumino terms in super Yang-Mills effective actions,” Phys. Lett. B 474, 95 (2000); hep-th/9911246.
K. A. Intriligator, “Anomaly matching and a Hopf- Wess-Zumino term in 6d, N = (2, 0) field theories,” Nucl. Phys. B 581, 257 (2000); hep-th/0001205.
I. L. Buchbinder and E. A. Ivanov, “Complete N = 4 structure of low-energy effective action in N = 4 super Yang-Mills theories,” Phys. Lett. B 524, 208 (2002); hep-th/0111062.
A. Galperin, E. Ivanov, V. Ogievetsky, and E. Sokatchev, “Harmonic superspace: Key to N = 2 supersymmetry theories,” JETP Lett. 40, 912 (1984).
A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky, and E. Sokatchev, “Unconstrained N = 2 matter, Yang- Mills and supergravity theories in harmonic superspace,” Class. Quant. Grav. 1, 469 (1984).
D. V. Belyaev and I. B. Samsonov, “Wess–Zumino term in the N = 4 SYM effective action revisited,” JHEP 1104, 112 (2011); arXiv:1103.5070 [hep-th].
D. V. Belyaev and I. B. Samsonov, “Bi-harmonic superspace for N = 4 d = 4 super Yang-Mills,” JHEP 09, 056 (2011); arXiv:1106.0611 [hep-th].
I. L. Buchbinder, E. A. Ivanov, I. B. Samsonov, and B. M. Zupnik, “Superconformal N = 3 SYM lowenergy effective action,” JHEP 1201, 001 (2012); arXiv:1111.4145 [hep-th].
I. L. Buchbinder, E. A. Ivanov, and A. Y. Petrov, “Complete low-energy effective action in N = 4 SYM: A direct N = 2 supergraph calculation,” Nucl. Phys. B 653, 64 (2003); hep-th/0210241.
A. T. Banin, I. L. Buchbinder, and N. G. Pletnev, “One-loop effective action for N = 4 SYM theory in the hypermultiplet sector: Leading low-energy approximation and beyond,” Phys. Rev. D 68, 065024 (2003); hep-th/0304046.
I. L. Buchbinder and N. G. Pletnev, “Construction of one-loop N = 4 SYM effective action on the mixed branch in the harmonic superspace approach,” JHEP 0509, 073 (2005); hep-th/0504216.
I. L. Buchbinder, E. A. Ivanov, and N. G. Pletnev, “Superfield approach to construction of the effective action in quantum field theory with extended supersymmetry,” Phys. Part. Nucl. 47, No. 3, 291 (2016).
P. Fayet, “Spontaneous generation of massive multiplets and central charges in extended supersymmetric theories,” Nucl. Phys. B 149, 137 (1979).
I. L. Buchbinder, S. M. Kuzenko, and B. A. Ovrut, “On the D = 4, N = 2 non-renormalization theorem,” Phys. Lett. B 433, 335 (1998); hep-th/9710142.
I. L. Buchbinder, N. G. Pletnev, and K. V. Stepanyantz, “Manifestly N = 2 supersymmetric regularization for N = 2 supersymmetric field theories,” Phys. Lett. B 751, 434 (2015); arXiv:1509.08055 [hep-th].
N. Dorey, V. V. Khoze, M. P. Mattis, M. J. Slater, and W. A. Weir, “Instantons, higher derivative terms, and non-renormalization theorems in supersymmetric gauge theories,” Phys. Lett. B 408, 213 (1997); hepth/9706007.
M. Henningson, “Extended superspace, higher derivatives and SL(2, Z) duality,” Nucl. Phys. B 458, 445 (1996); hep-th/9507135.
A. Patani, M. Schlindwein, and Q. Shafi, “Topological charges in field theory,” J. Phys. A 9, 1513 (1976).
E. Braaten, T. L. Curtright, and C. K. Zachos, “Torsion and geometrostasis in nonlinear sigma models,” Nucl. Phys. B 260, 630 (1985).
I. L. Buchbinder and S. M. Kuzenko, Ideas and Methods of Supersymmetry and Supergravity or a Walk through Superspace (IOP, Bristol, UK, 1995), p. 640.
S. J. Gates, M. T. Grisaru, M. Rocek, and W. Siegel, “Superspace, or one thousand and one lessons in supersymmetry,” Front. Phys. 58, 1 (1983); hepth/0108200.
A. Galperin, E. Ivanov, V. Ogievetsky, and E. Sokatchev, “Harmonic supergraphs: Green functions,” Class. Quant. Grav. 2, 601 (1985).
A. Karlhede, U. Lindström, and M. Rocek, “Selfinteracting tensor multiplets in N = 2 superspace,” Phys. Lett. B 147, 297 (1984).
U. Lindström and M. Rocek, “New hyperkähler metrics and new supermultiplets,” Commun. Math. Phys. 115, 21 (1988).
U. Lindström and M. Rocek, “N = 2 super Yang-Mills theory in projective superspace,” Commun. Math. Phys. 128, 191 (1990).
S. M. Kuzenko, “Projective superspace as a double punctured harmonic superspace,” Int. J. Mod. Phys. A 14, 1737 (1999); hep-th/9806147.
A. S. Galperin, E. A. Ivanov, V. I. Ogievetsky, and E. S. Sokatchev, Harmonic Superspace (Univ. Pr., Cambridge, UK, 2001), p. 306.
A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky, and E. Sokatchev, “N = 3 supersymmetric gauge theory,” Phys. Lett. B 151, 215 (1985).
A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky, and E. Sokatchev, “Unconstrained off-shell N = 3 supersymmetric Yang–Mills theory,” Class. Quant. Grav. 2, 155 (1985).
L. Alvarez-Gaumé and P. H. Ginsparg, “The structure of gauge and gravitational anomalies,” Annals Phys. 161, 423 (1985).
G. ’t Hooft, “Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking,” NATO Adv. Study Inst., B: Phys. 59, 135 (1980).
S. Weinberg, The Quantum Theory of Fields, Vol. 2: Modern Applications (Univ. Pr., Cambridge, UK, 1996), p. 489.
A. V. Manohar, “Wess–Zumino terms in supersymmetric gauge theories,” Phys. Rev. Lett. 81, 1558 (1998); hep-th/9805144.
P. S. Howe, E. Sokatchev, and P. C. West, “Threepoint functions and N = 4 Yang-Mills,” Phys. Lett. B 444, 431 (1998); hep-th/9808162.
E. S. Fradkin and A. A. Tseytlin, “One-loop beta function in conformal supergravities,” Nucl. Phys. B 203, 157 (1982).
E. S. Fradkin and A. A. Tseytlin, “Conformal anomaly in Weyl theory and anomaly free superconformal theories,” Phys. Lett. B 134, 187 (1984).
A. Galperin, E. Ivanov, and V. Ogievetsky, “Grassmann analyticity and extended supersymmetry,” Pisma ZhETF 33, 176 (1981).
M. F. Sohnius, “Bianchi identities for supersymmetric gauge theories,” Nucl. Phys. B 136, 461 (1978).
B. M. Zupnik, “Solution of constraints of the supergauge theory in SU(2)/U(1) harmonic superspace,” Theor. Mat. Fiz. 69, 207 (1986).
B. M. Zupnik, “The action of the supersymmetric N = 2 gauge theory in harmonic superspace,” Phys. Lett. B 183, 175 (1987).
A. Galperin, E. Ivanov, V. Ogievetsky, and E. Sokatchev, “Harmonic supergraphs: Feynman rules and examples,” Class. Quant. Grav. 2, 617 (1985).
E. I. Buchbinder, I. L. Buchbinder, E. A. Ivanov, S. M. Kuzenko, and B. A. Ovrut, “Low-energy effective action in N = 2 supersymmetric field theories,” Phys. Part. Nucl. 32, 641 (2001).
P. C. Argyres, A. M. Awad, G. A. Braun, and F. P. Esposito, “Higher derivative terms in N = 2 supersymmetric effective actions,” JHEP 0307, 060 (2003); hep-th/0306118.
I. L. Buchbinder and N. G. Pletnev, “Hypermultiplet dependence of one-loop effective action in the N = 2 superconformal theories,” JHEP 0704, 096 (2007); hep-th/0611145.
F. Delduc and J. McCabe, “The quantization of super Yang-Mills off-shell in harmonic superspace,” Class. Quant. Grav. 6, 233 (1989).
E. A. Ivanov and B. M. Zupnik, “N = 3 supersymmetric Born-Infeld theory,” Nucl. Phys. B 618, 3 (2001); hep-th/0110074.
L. Andrianopoli, S. Ferrara, E. Sokatchev, and B. Zupnik, “Shortening of primary operators in N-extended and harmonic superspace analyticity,” Adv. Theor. Math. Phys. 4, 1149 (2000); hepth/9912007.
A. S. Galperin, E. A. Ivanov, and V. I. Ogievetsky, “Superspaces for N = 3 supersymmetry,” Sov. J. Nucl. Phys. 46, 543 (1987).
B. U. W. Schwab and C. Vergu, “Twistors, harmonics and holomorphic Chern-Simons,” JHEP 1303, 046 (2013); arXiv:1301.1536 [hep-th].
E. Ivanov, S. Kalitzin, Ai Viet Nguyen, and V. Ogievetsky, “Harmonic superspaces of extended supersymmetry. The calculus of harmonic variables,” J. Phys. A 18, 3433 (1985).
I. L. Buchbinder, O. Lechtenfeld, and I. B. Samsonov, “N = 4 superparticle and super Yang-Mills theory in USp(4) harmonic superspace,” Nucl. Phys. B 802, 208 (2008); arXiv:0804.3063 [hep-th].
V. P. Akulov, D. P. Sorokin, and I. A. Bandos, “Particle mechanics in harmonic superspace,” Mod. Phys. Lett. A 3, 1633 (1988).
V. P. Akulov, I. A. Bandos, and D. P. Sorokin, “Particle in harmonic N = 2 superspace,” Sov. J. Nucl. Phys. 47, 724 (1988).
I. L. Buchbinder and I. B. Samsonov, “N = 3 superparticle model,” Nucl. Phys. B 802, 180 (2008); arXiv:0801.4907 [hep-th].
I. L. Buchbinder and N. G. Pletnev, “Towards harmonic superfield formulation of N = 4 SYM theory with central charge,” Nucl. Phys. B 877, 936 (2013); arXiv:1307.6300 [hep-th].
I. A. Bandos, “Solution of linear equations in spaces of harmonic variables,” Theor. Math. Phys. 76, 783 (1988).
G. G. Hartwell and P. S. Howe, “(N, p, q) harmonic superspace,” Int. J. Mod. Phys. A 10, 3901 (1995); hep-th/9412147.
E. Ivanov and A. Sutulin, “Sigma models in (4,4) harmonic superspace,” Nucl. Phys. B 432, 246 (1994).
E. A. Ivanov, “On the harmonic superspace geometry of (4,4) supersymmetric sigma models with torsion,” Phys. Rev. D 53, 2201 (1996); hep-th/9502073.
E. A. Ivanov, “Off-shell (4,4) supersymmetric sigma models with torsion as gauge theories in harmonic superspace,” Phys. Lett. B 356, 239 (1995); hepth/9504070.
S. Bellucci and E. Ivanov, “N = (4,4), 2-D supergravity in SU(2) × SU(2) harmonic superspace,” Nucl. Phys. B 587, 445 (2000); hep-th/0003154.
E. Ivanov and A. Sutulin, “Diversity of off-shell twisted (4,4) multiplets in SU(2) × SU(2) harmonic superspace,” Phys. Rev. D 70, 045022 (2004); hepth/0403130.
S. Bellucci, E. Ivanov, and A. Sutulin, “N = 8 mechanics in SU(2)SU(2) harmonic superspace,” Nucl. Phys. B 722, 297 (2005).
E. Ivanov and J. Niederle, “Bi-harmonic superspace for N = 4 mechanics,” Phys. Rev. D 80, 065027 (2009); arXiv:0905.3770 [hep-th].
I. L. Buchbinder, A. Yu. Petrov, and A. A. Tseytlin, “Two-loop N = 4 super Yang-Mills effective action and interacting D3-branes,” Nucl. Phys. B 621, 179 (2002); hep-th/0110173.
S. M. Kuzenko, “Self-dual effective action of N = 4 SYM revisited,” JHEP 0503, 008 (2005); hepth/0410128.
I. Chepelev and A. A. Tseytlin, “Long distance interactions of branes: Correspondence between supergravity and super-Yang-Mills descriptions,” Nucl. Phys. B 515, 73 (1998); hep-th/9709087.
F. Gonzalez-Rey, B. Kulik, I. Y. Park, and M. Rocek, “Selfdual effective action of N = 4 super-Yang-Mills,” Nucl. Phys. B 544, 218 (1999); hep-th/9810152.
S. Bellucci, E. Ivanov, and S. Krivonos, “AdS/CFT equivalence transformation,” Phys. Rev. D 66, 086001 (2002).
S. M. Kuzenko and I. N. McArthur, “Relaxed superselfduality and N = 4 SYM at two loops,” Nucl. Phys. B 697, 89 (2004); hep-th/0403240.
S. M. Kuzenko, I. N. McArthur, and S. Theisen, “Low-energy dynamics from deformed conformal symmetry in quantum 4D N = 2 SCFTs,” Nucl. Phys. B 660, 131 (2003); hep-th/0210007.
D. Chicherin and E. Sokatchev, N = 4 Super-Yang- Mills in LHC Superspace, Part I: Classical and Quantum Theory; arXiv:1601.06803 [hep-th].
D. Chicherin and E. Sokatchev, N = 4 Super-Yang- Mills in LHC superspace, Part II: Non-Chiral Correlation Functions of the Stress-Tensor Multiplet; arXiv:1601.06804 [hep-th].
O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, “N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals,” JHEP 0810, 091 (2008); arXiv:0806.1218 [hep-th].
J. Bagger and N. Lambert, “Gauge symmetry and supersymmetry of multiple M2-branes,” Phys. Rev. D 77, 065008 (2008); arXiv:0711.0955 [hep-th].
A. Gustavsson, “Algebraic structures on parallel M2- branes,” Nucl. Phys. B 811, 66 (2009); arXiv:0709.1260 [hep-th].
I. L. Buchbinder, E. A. Ivanov, O. Lechtenfeld, N. G. Pletnev, I. B. Samsonov, and B. M. Zupnik, “ABJM models in N = 3 harmonic superspace,” JHEP 0903, 096 (2009); arXiv:0811.4774 [hep-th].
S. M. Kuzenko and I. B. Samsonov, “On superconformal Chern–Simons-matter theories in N = 4 superspace,” Phys. Rev. D 92, 105007 (2015); arXiv:1507.05377 [hep-th].
I. L. Buchbinder and N. G. Pletnev, “Construction of 6D supersymmetric field models in N = (1, 0) harmonic superspace,” Nucl. Phys. B 892, 21 (2015); arXiv:1502.03257 [hep-th].
I. L. Buchbinder and N. G. Pletnev, “Effective action in N = 1, D5 supersymmetric gauge theories: Harmonic superspace approach,” JHEP 1511, 130 (2015); arXiv:1510.02563 [hep-th].
G. Bossard, E. Ivanov, and A. Smilga, “Ultraviolet behavior of 6D supersymmetric Yang–Mills theories and harmonic superspace,” JHEP 1512, 085 (2015); arXiv:1509.08027 [hep-th].
I. L. Buchbinder, B. S. Merzlikin, N. G. Pletnev, Induced low-energy effective action in the 6D, N = (1,0) hypermultiplet theory on the vector multiplet background, Phys. Lett. B759, 621 (2016).
I. L. Buchbinder, E. A. Ivanov, M. B. Merzlikin, K. V. Stepanyantz, One-loop divergences in the 6D, N = (1,0) abelian gauge theory. Phys. Lett. B 763, 375 (2016).