The largest Laplacian and signless Laplacian H-eigenvalues of a uniform hypergraph

Linear Algebra and Its Applications - Tập 469 - Trang 1-27 - 2015
Shenglong Hu1,2, Liqun Qi2, Jinshan Xie3
1Department of Mathematics, School of Science, Tianjin University, Tianjin, 300072, China
2Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
3School of Mathematics and Computer Science, Longyan University, Longyan, Fujian, China

Tài liệu tham khảo

Berge, 1973 Brouwer, 2011 Chang, 2008, Perron–Frobenius theorem for nonnegative tensors, Commun. Math. Sci., 6, 507, 10.4310/CMS.2008.v6.n2.a12 Chung, 1997 Cooper, 2012, Spectra of uniform hypergraphs, Linear Algebra Appl., 436, 3268, 10.1016/j.laa.2011.11.018 Cvetković, 2007, Signless Laplacians of finite graphs, Linear Algebra Appl., 423, 155, 10.1016/j.laa.2007.01.009 Grone, 1994, The Laplacian spectrum of a graph. II, SIAM J. Discrete Math., 7, 221, 10.1137/S0895480191222653 Hu, 2013, On determinants and eigenvalue theory of tensors, J. Symbolic Comput., 50, 508, 10.1016/j.jsc.2012.10.001 Hu, 2012, Algebraic connectivity of an even uniform hypergraph, J. Comb. Optim., 24, 564, 10.1007/s10878-011-9407-1 Hu, 2013, The Laplacian of a uniform hypergraph, J. Comb. Optim. Hu, 2014, The eigenvectors associated with the zero eigenvalues of the Laplacian and signless Laplacian tensors of a uniform hypergraph, Discrete Appl. Math., 169, 140, 10.1016/j.dam.2013.12.024 Hu, 2013, Cored hypergraphs, power hypergraphs and their Laplacian eigenvalues, Linear Algebra Appl., 439, 2980, 10.1016/j.laa.2013.08.028 Li, 2013, The Z-eigenvalues of a symmetric tensor and its application to spectral hypergraph theory, Numer. Linear Algebra, 20, 1001, 10.1002/nla.1877 Lim, 2005, Singular values and eigenvalues of tensors: a variational approach, 129 Lim, 2007 Pearson, 2014, On spectral hypergraph theory of the adjacency tensor, Graphs Combin., 30, 1233, 10.1007/s00373-013-1340-x Qi, 2005, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40, 1302, 10.1016/j.jsc.2005.05.007 Qi, 2014, H+-eigenvalues of Laplacian and signless Laplacian tensors, Commun. Math. Sci., 12, 1045, 10.4310/CMS.2014.v12.n6.a3 Qi, 2013, Symmetric nonnegative tensors and copositive tensors, Linear Algebra Appl., 439, 228, 10.1016/j.laa.2013.03.015 Qi, 2014, Regular uniform hypergraphs, s-cycles, s-paths and their largest Laplacian H-eigenvalues, Linear Algebra Appl., 443, 215, 10.1016/j.laa.2013.11.008 Rota Bulò, 2009 Rota Bulò, 2009, A generalization of the Motzkin–Straus theorem to hypergraphs, Optim. Lett., 3, 187, 10.1007/s11590-008-0108-3 Yang, 2011, Further results for Perron–Frobenius theorem for nonnegative tensors II, SIAM J. Matrix Anal. Appl., 32, 1236, 10.1137/100813671 Xie, 2013, H-Eigenvalues of the signless Laplacian tensor for an even uniform hypergraph, Front. Math. China, 8, 107, 10.1007/s11464-012-0266-6 Xie, 2013, On the Z-eigenvalues of the adjacency tensors for uniform hypergraphs, Linear Algebra Appl., 439, 2195, 10.1016/j.laa.2013.07.016 Xie, 2013, On the Z-eigenvalues of the signless Laplacian tensor for an even uniform hypergraph, Numer. Linear Algebra, 20, 1030, 10.1002/nla.1910 Zhang, 2007, The Laplacian eigenvalues of graphs: a survey, 201 Zhang, 2002, The spectral radius of triangle-free graphs, Australas. J. Combin., 26, 33 Zhou, 2014, Some spectral properties of uniform hypergraphs, Electron. J. Combin., 21, P4.24, 10.37236/4430