The largest Laplacian and signless Laplacian H-eigenvalues of a uniform hypergraph
Tài liệu tham khảo
Berge, 1973
Brouwer, 2011
Chang, 2008, Perron–Frobenius theorem for nonnegative tensors, Commun. Math. Sci., 6, 507, 10.4310/CMS.2008.v6.n2.a12
Chung, 1997
Cooper, 2012, Spectra of uniform hypergraphs, Linear Algebra Appl., 436, 3268, 10.1016/j.laa.2011.11.018
Cvetković, 2007, Signless Laplacians of finite graphs, Linear Algebra Appl., 423, 155, 10.1016/j.laa.2007.01.009
Grone, 1994, The Laplacian spectrum of a graph. II, SIAM J. Discrete Math., 7, 221, 10.1137/S0895480191222653
Hu, 2013, On determinants and eigenvalue theory of tensors, J. Symbolic Comput., 50, 508, 10.1016/j.jsc.2012.10.001
Hu, 2012, Algebraic connectivity of an even uniform hypergraph, J. Comb. Optim., 24, 564, 10.1007/s10878-011-9407-1
Hu, 2013, The Laplacian of a uniform hypergraph, J. Comb. Optim.
Hu, 2014, The eigenvectors associated with the zero eigenvalues of the Laplacian and signless Laplacian tensors of a uniform hypergraph, Discrete Appl. Math., 169, 140, 10.1016/j.dam.2013.12.024
Hu, 2013, Cored hypergraphs, power hypergraphs and their Laplacian eigenvalues, Linear Algebra Appl., 439, 2980, 10.1016/j.laa.2013.08.028
Li, 2013, The Z-eigenvalues of a symmetric tensor and its application to spectral hypergraph theory, Numer. Linear Algebra, 20, 1001, 10.1002/nla.1877
Lim, 2005, Singular values and eigenvalues of tensors: a variational approach, 129
Lim, 2007
Pearson, 2014, On spectral hypergraph theory of the adjacency tensor, Graphs Combin., 30, 1233, 10.1007/s00373-013-1340-x
Qi, 2005, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40, 1302, 10.1016/j.jsc.2005.05.007
Qi, 2014, H+-eigenvalues of Laplacian and signless Laplacian tensors, Commun. Math. Sci., 12, 1045, 10.4310/CMS.2014.v12.n6.a3
Qi, 2013, Symmetric nonnegative tensors and copositive tensors, Linear Algebra Appl., 439, 228, 10.1016/j.laa.2013.03.015
Qi, 2014, Regular uniform hypergraphs, s-cycles, s-paths and their largest Laplacian H-eigenvalues, Linear Algebra Appl., 443, 215, 10.1016/j.laa.2013.11.008
Rota Bulò, 2009
Rota Bulò, 2009, A generalization of the Motzkin–Straus theorem to hypergraphs, Optim. Lett., 3, 187, 10.1007/s11590-008-0108-3
Yang, 2011, Further results for Perron–Frobenius theorem for nonnegative tensors II, SIAM J. Matrix Anal. Appl., 32, 1236, 10.1137/100813671
Xie, 2013, H-Eigenvalues of the signless Laplacian tensor for an even uniform hypergraph, Front. Math. China, 8, 107, 10.1007/s11464-012-0266-6
Xie, 2013, On the Z-eigenvalues of the adjacency tensors for uniform hypergraphs, Linear Algebra Appl., 439, 2195, 10.1016/j.laa.2013.07.016
Xie, 2013, On the Z-eigenvalues of the signless Laplacian tensor for an even uniform hypergraph, Numer. Linear Algebra, 20, 1030, 10.1002/nla.1910
Zhang, 2007, The Laplacian eigenvalues of graphs: a survey, 201
Zhang, 2002, The spectral radius of triangle-free graphs, Australas. J. Combin., 26, 33
Zhou, 2014, Some spectral properties of uniform hypergraphs, Electron. J. Combin., 21, P4.24, 10.37236/4430