The lagrange multiplier method for solving a semicoercive model problem with friction
Tóm tắt
In model problems with friction, unconditional minimization of a nondifferentiable functional is reduced to conditional minimization of a differentiable functional. To solve the semicoercive problem obtained, we use a dual scheme based on a modified Lagrangian functional.
Tài liệu tham khảo
Glovinski, R., Lions, Zh.-L., and Tremol’er, R., Chislennoe issledovanie variatsionnykh neravenstv (Numerical Study of Variational Inequalities),Moscow: Mir, 1979.
Vikhtenko, E.M., Kushniruk, N.N., and Namm, R.V., An Approach to Solving a Semicoercive Problem with Friction, Procs. 14th Baikal Int. Workshop on Optimization Methods and Their Appl., vol. 1, Mathematical Programming, 2008, pp. 280–286.
Glavachek, I., Gaslinger, Ya., Nechas, I., and Lovishek, Ya., Reshenie variatsionnykh neravenstv v mekhanike (Solving Variational Inequalities in Mechanics),Moscow: Mir, 1986.
Podgaev, A.G., Uniqueness Theorems in the Minimization Problem for One Nondifferentiable Functional, Dal. Mat. Zh., 2000, vol. 1, no. 1, pp. 28–37.
Namm, R.V. and Podgaev A.G, OnW 22 -Regularity of Solutions for Semicoercive Variational Inequalities, Dal. Mat. Zh., 2002, vol. 3, no. 2, pp. 210–215.
Gol’shtein, E.G. and Tret’yakov, N.V., Modifitsirovannye funktsii Lagranzha (Modified Lagrange functions), M.: Nauka, 1989.
Grossman, K. and Kaplan, A.A., Nelineinoe programmirovanie na osnove bezuslovnoi minimizatsii (Nonlinear Programming Based on Unconditional Minimization), Novosibirsk: Nauka, 1981.
Vu, G., Namm, R.V., and Sachkov, S.A., Iterative Saddle-Point-Search Method for the Semicoercive Signorini Problem Based on a Modified Lagrangian Functional, Zh. Vych. Mat. Mat. Fiz., 2006, vol. 46, no. 46, pp. 26–36.
Dyuvo, G. and Lions, Zh.-L., Neravenstva v mechanike i fizike (Inequalities in Mechanics and Physics), Moscow: Mir, 1980.