The kinetic activity of green synthesized CuO NPs using Eucalyptus globulus leaf extract and its synergistic effect with antibiotics on MDR Shigella sonnei

Biologia - Trang 1-10 - 2023
Wenling Li1, Xuanyi Wu2, Weili Zhou3, Fereshteh Bagherinejad4, Davood Zaeifi4,5
1School of Environmental and Life Science, Nanning Normal University, Nanning, China
2School of Modern Language Communication, Universiti Putra Malaysia, Selangor, Malaysia
3School of Marxism, Nanning Normal University, Nanning, China
4Department of Cellular and Molecular Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
5Department of Cell and Molecular Biology, School of Biology, University of Tehran, Tehran, Iran

Tóm tắt

This study investigated the antimicrobial activity of the green synthesis copper oxide nanoparticles (CuO-NPs) from Eucalyptus globulus leaf extract against S. sonnei clinical isolates and the reference strain S. sonnei ATCC 9290 alone and in synergy with antibiotics. Biosynthesized NPs analyzed for shape, size, and crystal nature. The antimicrobial genotype and phenotype characteristic for selecting the most resistant isolates from 30 S. sonnei clinical isolates performed through the distribution of ipaH, sigA, and virF, CTX-M-1, CIT group, aac(6’)-Ib-cr genes by polymerase chain reaction (PCR) technology and Kirby-Bauer susceptibility test. The minimum inhibitory concentration (MIC) of CuO-NPs against S. sonnei was determined within 0–360 min treatment time. The double-disc method was performed for semi-sensitive and antibiotic-resistant strains to evaluate the probable inhibitory effect in synergy form. XRD, TEM, and FTIR analysis confirmed the successful synthesis of NPs with appropriate purity, shape, and size. Only one of the S. sonnei isolates was positive for all MDR-related genes (blaCTX-M-1 and blaCIT, aac(6’)-Ib-cr) and showed the highest susceptibility reaction against CuO-NPs, Z = 312.5 mL.µg−1 in comparison to Z = 256.25 mL.µg−1 for the standard strain, and the process continued by performing the optimal ratio of NPs on semi-sensitive and also resistance antibiotic in synergy with NPs for the bacteria isolated. Furthermore, the synergy effect of CuO-NPs with oxacillin, chloramphenicol, imipenem, and levofloxacin was higher than using antibiotics alone. CuO-NPs, enhance the properties and characteristics of antibacterial potency in synergy or developed synthetic functionalized NPs with antibiotics.

Tài liệu tham khảo

Aamodt KI, Powers AC (2017) Signals in the pancreatic islet microenvironment influence beta-cell proliferation. Diabetes Obes Metab 19(Suppl 1):124–136. https://doi.org/10.1111/dom.13031 Abbasi E, Abtahi H, van Belkum A, Ghaznavi-Rad E (2019) Multidrug-resistant Shigella infection in pediatric patients with diarrhea from central Iran. Infect Drug Resist 12:1535–1544. https://doi.org/10.2147/IDR.S203654 Aguirre Rivera J, Larsson J, Volkov IL, Seefeldt AC, Sanyal S, Johansson M (2021) Real-time measurements of aminoglycoside effects on protein synthesis in live cells. Proc Natl Acad Sci U S A 118(9):e2013315118. https://doi.org/10.1073/pnas.2013315118 Ahamed M, Alhadlaq HA, Khan MAM, Karuppiah P, Al-Dhabi NA (2014) Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. J Nanomaterials 2014:17–17. https://doi.org/10.1155/2014/637858 Akhavan O, Ghaderi E (2010) Cu and CuO nanoparticles immobilized by silica thin films as antibacterial materials and photocatalysts. Surf Coat Technol 205(1):219–223. https://doi.org/10.1016/j.surfcoat.2010.06.036 Alhalili Z (2022) Green synthesis of copper oxide nanoparticles CuO NPs from Eucalyptus globoulus leaf extract: Adsorption and design of experiments. Arab J Chem 15(5):103739. https://doi.org/10.1016/j.arabjc.2022.103739 Amin F, Fozia KB, Alotaibi A, Qasim M, Ahmad I, Ullah R, Bourhia M, Gul A, Zahoor S, Ahmad R (2021) Green synthesis of copper oxide nanoparticles using Aerva javanica leaf extract and their characterization and investigation of in vitro antimicrobial potential and cytotoxic activities. Evid Based Complement Alternat Med 2021:5589703. https://doi.org/10.1155/2021/5589703 Anandan S, MuthuirulandiSethuvel DP, Gajendiren R, Verghese VP, Walia K, Veeraraghavan B (2017) Molecular characterization of antimicrobial resistance in clinical Shigella isolates during 2014 and 2015: trends in south India. Germs 7(3):115–122. https://doi.org/10.18683/germs.2017.1116 Andrade FB, Abreu AG, Nunes KO, Gomes TAT, Piazza RMF, Elias WP (2017) Distribution of serine protease autotransporters of Enterobacteriaceae in typical and atypical enteroaggregative Escherichia coli. Infect Genet Evol 50:83–86. https://doi.org/10.1016/j.meegid.2017.02.018 Babaei S, Bajelani F, Mansourizaveleh O, Abbasi A, Oubari F (2017) A Study of the Bactericidal effect of copper oxide nanoparticles on Shigella Sonnei and Salmonella Typhimurium. J Babol Univ Med Sci 19(11):76–81. https://doi.org/10.18869/acadpub.jbums.19.11.76 Bakhshi B, Bayat B, Lari AR (2017) Multiple- locus variable-number tandem-repeat analysis (MLVA) of Shigella sonnei isolates of 2012 outbreak I. R Iran Microb Pathog 102:69–73. https://doi.org/10.1016/j.micpath.2016.10.021 Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal 6(2):71–79. https://doi.org/10.1016/j.jpha.2015.11.005 Bengtsson RJ, Simpkin AJ, Pulford CV, Low R, Rasko DA, Rigden DJ, Hall N, Barry EM, Tennant SM, Baker KS (2022) Pathogenomic analyses of Shigella isolates inform factors limiting shigellosis prevention and control across LMICs. Nat Microbiol 7(2):251–261. https://doi.org/10.1038/s41564-021-01054-z Blinova I, Ivask A, Heinlaan M, Mortimer M, Kahru A (2010) Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ Pollut 158(1):41–47. https://doi.org/10.1016/j.envpol.2009.08.017 Cioffi N, Ditaranto N, Torsi L, Picca RA, Sabbatini L, Valentini A, Novello L, Tantillo G, Bleve-Zacheo T, Zambonin PG (2005) Analytical characterization of bioactive fluoropolymer ultra-thin coatings modified by copper nanoparticles. Anal Bioanal Chem 381(3):607–616. https://doi.org/10.1007/s00216-004-2761-4 Di Martino ML, Falconi M, Micheli G, Colonna B, Prosseda G (2016) The multifaceted activity of the VirF regulatory protein in the Shigella lifestyle. Front Mol Biosci 3:61. https://doi.org/10.3389/fmolb.2016.00061 Farajzadeh-Sheikh A, Savari M, Ahmadi K, Hosseini Nave H, Shahin M, Afzali M (2020) Distribution of genes encoding virulence factors and the genetic diversity of enteroinvasive Escherichia coli (EIEC) isolates from patients with diarrhea in Ahvaz. Iran Infect Drug Resist 13:119–127. https://doi.org/10.2147/IDR.S235009 Farshad S, Sheikhi R, Japoni A, Basiri E, Alborzi A (2006) Characterization of Shigella strains in Iran by plasmid profile analysis and PCR amplification of ipa genes. J Clin Microbiol 44(8):2879–2883. https://doi.org/10.1128/jcm.00310-06 Fathi azar khavarani M, Najafi M, Shakibapour Z, Zaeifi D (2016) Kinetics activity of Yersinia Intermedia against zno nanoparticles either synergism antibiotics by double-disc synergy test method. Iran J Biotechnol 14(1):39–44. https://doi.org/10.15171/ijb.1184 Gu B, Ke X, Pan S, Cao Y, Zhuang L, Yu R, Qian H, Liu G, Tong M (2013) Prevalence and trends of aminoglycoside resistance in Shigella worldwide, 1999–2010. J Biomed Res 27(2):103–115. https://doi.org/10.7555/JBR.27.20120125 Gu B, Fan W, Qin T, Kong X, Dong C, Tan Z, Chen Y, Xu N, Ma P, Bao CJ, Qian H (2019) Existence of virulence genes in clinical Shigella sonnei isolates from Jiangsu Province of China: a multicenter study. Ann Transl Med 7(14):305. https://doi.org/10.21037/atm.2019.06.13 Hajipour MJ, Fromm KM, Ashkarran AA, Jimenez de Aberasturi D, de Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10):499–511. https://doi.org/10.1016/j.tibtech.2012.06.004 Hegde S, Benoit SR, Arvelo W, Lindblade K, Lopez B, McCracken JP, Bernart C, Roldan A, Bryan JP (2019) Burden of laboratory-confirmed shigellosis infections in Guatemala 2007–2012: results from a population-based surveillance system. BMC Public Health 19(Suppl 3):474. https://doi.org/10.1186/s12889-019-6780-7 Hemeg HA (2017) Nanomaterials for alternative antibacterial therapy. Int J Nanomedicine 12:8211–8225. https://doi.org/10.2147/IJN.S132163 Hendriks ACA, Reubsaet FAG, Kooistra-Smid A, Rossen JWA, Dutilh BE, Zomer AL, van den Beld MJC, group I, (2020) Genome-wide association studies of Shigella spp. and Enteroinvasive Escherichia coli isolates demonstrate an absence of genetic markers for prediction of disease severity. BMC Genomics 21(1):138. https://doi.org/10.1186/s12864-020-6555-7 Holt KE, Baker S, Weill FX, Holmes EC, Kitchen A, Yu J, Sangal V, Brown DJ, Coia JE, Kim DW, Choi SY, Kim SH, da Silveira WD, Pickard DJ, Farrar JJ, Parkhill J, Dougan G, Thomson NR (2012) Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe. Nat Genet 44(9):1056–1059. https://doi.org/10.1038/ng.2369 Jerbi A, Derbali A, Elfeki A, Kammoun M (2017) Essential oil composition and biological activities of Eucalyptus globulus leaves extracts from Tunisia. J Essent Oil-Bear Plants 20(2):438–448. https://doi.org/10.1080/0972060X.2017.1304832 Kim JH, Cho H, Ryu SE, Choi MU (2000) Effects of metal ions on the activity of protein tyrosine phosphatase VHR: highly potent and reversible oxidative inactivation by Cu2+ ion. Arch Biochem Biophys 382(1):72–80. https://doi.org/10.1006/abbi.2000.1996 Koch AM, Reynolds F, Merkle HP, Weissleder R, Josephson L (2005) Transport of surface-modified nanoparticles through cell monolayers. ChemBioChem 6(2):337–345. https://doi.org/10.1002/cbic.200400174 Letchumanan D, Sok SPM, Ibrahim S, Nagoor NH, Arshad NM (2021) Plant-based biosynthesis of copper/copper oxide nanoparticles: An update on their applications in biomedicine, mechanisms, and toxicity. Biomolecules 11(4):564. https://doi.org/10.3390/biom11040564 Li Y, Zhang W, Niu J, Chen Y (2013) Surface-coating-dependent dissolution, aggregation, and reactive oxygen species (ROS) generation of silver nanoparticles under different irradiation conditions. Environ Sci Technol 47(18):10293–10301. https://doi.org/10.1021/es400945v Lin Y-s E, Vidic RD, Stout JE, McCartney CA, Yu VL (1998) Inactivation of Mycobacterium avium by copper and silver ions. Water Res 32(7):1997–2000. https://doi.org/10.1016/S0043-1354(97)00460-0 Lindsay B, Ochieng JB, Ikumapayi UN, Toure A, Ahmed D, Li S, Panchalingam S, Levine MM, Kotloff K, Rasko DA, Morris CR, Juma J, Fields BS, Dione M, Malle D, Becker SM, Houpt ER, Nataro JP, Sommerfelt H, Pop M, Oundo J, Antonio M, Hossain A, Tamboura B, Stine OC (2013) Quantitative PCR for detection of Shigella improves ascertainment of Shigella burden in children with moderate-to-severe diarrhea in low-income countries. J Clin Microbiol 51(6):1740–1746. https://doi.org/10.1128/JCM.02713-12 McIver CJ, White PA, Jones LA, Karagiannis T, Harkness J, Marriott D, Rawlinson WD (2002) Epidemic strains of Shigella sonnei biotype g carrying integrons. J Clin Microbiol 40(4):1538–1540. https://doi.org/10.1128/JCM.40.4.1538-1540.2002 Mohammad Shafiee M, Kargar M, Ghashang M (2016) Simple synthesis of copper oxide nanoparticles in the presence of extractive Rosmarinus Officinalis leaves. J Nanostruct 6(1):28–31. https://doi.org/10.7508/JNS.2016.01.004 Moosavian M, Seyed-Mohammadi S, Sheikh AF, Khoshnood S, Dezfuli AA, Saki M, Ghaderian G, Shahi F, Abdi M, Abbasi F (2019) Prevalence of enterotoxin-encoding genes among diverse Shigella strains isolated from patients with diarrhea, southwest Iran. Acta Microbiol Immunol Hung 66(1):91–101. https://doi.org/10.1556/030.65.2018.037 Naz S, Gul A, Zia M (2020) Single-step wet synthesis of copper oxide nanoparticles, characterization and their biological activities. Mater Sci Appl 4(103):1–11. https://doi.org/10.17303/jmsa.2020.4.103 Nguyen NHA, Padil VVT, Slaveykova VI, Cernik M, Sevcu A (2018) Green synthesis of metal and metal oxide nanoparticles and their effect on the unicellular alga Chlamydomonas reinhardtii. Nanoscale Res Lett 13(1):159. https://doi.org/10.1186/s11671-018-2575-5 Nikfar R, Shamsizadeh A, Darbor M, Khaghani S, Moghaddam M (2017) A Study of prevalence of Shigella species and antimicrobial resistance patterns in paediatric medical center, Ahvaz. Iran Iran J Microbiol 9(5):277–283 Panahi B, SoleimanMeygouni M, Zaeifi D (2023) Enhanced antibacterial activity in skin exudates isolated MDR Staphylococcus aureus by γ-Al2O3 nanoparticles. Nanomed J 10(1):41–46. https://doi.org/10.22038/nmj.2022.68234.1732 Rangel WM, Santa RAAB, Riella HG (2020) A facile method for synthesis of nanostructured copper (II) oxide by coprecipitation. J Mater Res Technol 9(1):994–1004. https://doi.org/10.1016/j.jmrt.2019.11.039 Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4(3):707–716. https://doi.org/10.1016/j.actbio.2007.11.006 Sack DA, Lyke C, McLaughlin C, Suwanvanichkij V; World Health Organization (2001) Antimicrobial resistance in shigellosis, cholera and campylobacteriosis (No. WHO/CDS/CSR/DRS/2001.8). World Health Organization, Geneva, Switzerland Sakhaei A, Savari M, Shokoohizadeh L, Hadian M, Ekrami A (2015) Characterization of shigella strains by plasmid profile analysis and antibiotic susceptibility patterns in a pediatric hospital in ahvaz. Int J Enteric Pathog 3(4):e29924. https://doi.org/10.17795/ijep29924 Seribelli AA, Frazao MR, Medeiros MIC, Falcao JP (2016) Molecular and phenotypic characterization of strains of Shigella sonnei isolated over 31 years suggests the circulation of two prevalent subtypes in Sao Paulo State. Brazil J Med Microbiol 65(7):666–677. https://doi.org/10.1099/jmm.0.000290 Shad AA, Shad WA (2021) Shigella sonnei: virulence and antibiotic resistance. Arch Microbiol 203(1):45–58. https://doi.org/10.1007/s00203-020-02034-3 Shahbazi E, Moreshedzadeh F, Zaeifi D (2018) Bacteriostatic Potency of Fe2O3 Against Enterococcus Faecalis in Synergy with Antibiotics by DDST Method. Avicenna J Med Biotechnol 11(2):176–179 Sharma A, Singh SK, Bajpai D (2010) Phenotypic and genotypic characterization of Shigella spp. with reference to its virulence genes and antibiogram analysis from river Narmada. Microbiol Res 165(1):33–42. https://doi.org/10.1016/j.micres.2008.02.002 Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18(2):321–336. https://doi.org/10.1016/0891-5849(94)00159-H Tavakoli S, Kharaziha M, Ahmadi S (2019) Green synthesis and morphology dependent antibacterial activity of copper oxide nanoparticles. J Nanostruct 9(1):163–171. https://doi.org/10.22052/jns.2019.01.018 Tsao N, Luh TY, Chou CK, Chang TY, Wu JJ, Liu CC, Lei HY (2002) In vitro action of carboxyfullerene. J Antimicrob Chemother 49(4):641–649. https://doi.org/10.1093/jac/49.4.641 Tyagi AK, Malik A (2011) Antimicrobial potential and chemical composition of Eucalyptus globulus oil in liquid and vapour phase against food spoilage microorganisms. Food Chem 126(1):228–235. https://doi.org/10.1016/j.foodchem.2010.11.002 US Food and Drug Administration (2005) Division of antiinfective and ophthalmology drug products (HFD-520)—Microbiological data for antibacterial drug products-development, analysis, and presentation. Center for Drug Evaluation and Research, U.S. Department of Health and Human Services Food and Drug Administration Yoon KY, Hoon Byeon J, Park JH, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373(2–3):572–575. https://doi.org/10.1016/j.scitotenv.2006.11.007 Zhu Z, Shi Y, Zhou X, Li B, Zhang J (2018) Molecular characterization of fluoroquinolone and/or cephalosporin resistance in Shigella sonnei isolates from yaks. BMC Vet Res 14(1):177. https://doi.org/10.1186/s12917-018-1500-6